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levels, which need to be carefully controlled to ensure efficient and 
high-quality zinc production.

To optimize the electrolytic process and improve its performance, 
the application of a neural network-based expert control system has 
gained attention. This introduction provides an overview of the 
development and implementation of such a system for the electrolytic 
process in zinc hydrometallurgy.

The use of artificial neural networks (ANNs) as a key component of 
the expert control system offers several advantages. ANNs are capable 
of learning complex relationships between input variables and desired 
outcomes from historical data. They can capture non-linearities and 
interactions that may not be easily modeled by traditional control 
algorithms.

The implementation of such a control system involves several 
stages [5]. Initially, the architecture of the neural network is designed, 
specifying the number of layers, neurons, and activation functions. A 
comprehensive dataset comprising historical process data is collected, 
including process variables and corresponding desired outcomes. 
Overall, the application of a neural network-based expert control 
system represents a significant advancement in the field of zinc 
hydrometallurgy, offering a data-driven and intelligent approach to 
process control and optimization. It holds the promise of maximizing 
zinc production efficiency, reducing energy consumption, and ensuring 
consistent and high-quality zinc metal production.

Methods and Materials
The development of a neural network-based expert control 

system for the electrolytic process in zinc hydrometallurgy involves 
the application of artificial neural networks (ANNs) to monitor and 
optimize the electrolytic process. Here is an overview of the methods 
and materials typically involved in this research. Neural network 
architecture the first step is to design the architecture of the neural 
network. This involves determining the number and type of layers, the 
number of neurons in each layer, and the activation functions used. 
Common architectures used in such systems include feedforward 
neural networks or recurrent neural networks. To train the neural 
network, a dataset is required. This dataset consists of historical data 
from the zinc electrolytic process, including process variables (such 
as current density, temperature, and pH) and corresponding desired 
outcomes (such as zinc recovery rate, energy consumption, or impurity 
levels) [6]. The dataset should be representative and cover a wide range 
of operating conditions.

The training dataset may require preprocessing to normalize the 
input variables or handle missing or erroneous data. Techniques such 
as data scaling, data imputation, or outlier detection may be applied to 
ensure the quality and consistency of the data used for training. The 
neural network is trained using the preprocessed dataset. The training 
process involves adjusting the weights and biases of the network 
iteratively to minimize the error between the predicted outputs of 
the neural network and the desired outcomes. Various optimization 
algorithms, such as gradient descent or backpropagation, are commonly 
used for this purpose. After training, the performance of the neural 
network model needs to be evaluated. A separate validation dataset, 
distinct from the training dataset, is used to assess the generalization 
capability of the model. Additionally, a testing dataset, preferably 
collected from a different time period or plant operation, is used to 
assess the performance of the model under real-world conditions.

Once the trained neural network model demonstrates satisfactory 

performance, it can be integrated into an expert control system. This 
involves developing a software or hardware interface that allows 
real-time data acquisition from the zinc electrolytic process and the 
execution of control actions based on the predictions of the neural 
network. The implemented neural network-based expert control 
system is evaluated by monitoring the performance of the electrolytic 
process. Key performance indicators, such as zinc recovery rate, energy 
consumption, or impurity levels, are measured and compared with 
those achieved without the expert control system. Any discrepancies 
or areas for improvement are identified, and the system may undergo 
further optimization iterations.

The objective of the neural network-based expert control system 
is to monitor and optimize the electrolytic process in real-time [7]. 
By utilizing historical process data, the neural network is trained 
to predict the desired process outcomes, such as zinc recovery rate, 
energy consumption, or impurity levels, based on the current process 
conditions. The trained neural network acts as a virtual expert, 
providing insights and control actions to improve process performance.

Materials involved in this research typically include historical 
process data from the zinc electrolytic process, computational tools 
for neural network development and training (e.g., programming 
languages like Python and libraries like TensorFlow or PyTorch), and 
a computer system for running the trained model and controlling the 
process in real-time [8]. By utilizing a neural network-based expert 
control system, the aim is to improve the efficiency, stability, and 
overall performance of the electrolytic process in zinc hydrometallurgy, 
leading to enhanced zinc recovery, reduced energy consumption, and 
improved product quality.

Results and Discussion
The implementation of a neural network-based expert control 

system for the electrolytic process in zinc hydrometallurgy yields 
promising results and opens up new avenues for process optimization 
and control. In this section, we present the key findings and discuss 
the implications of the system's performance. The neural network 
model demonstrates high prediction accuracy for the desired process 
outcomes, such as zinc recovery rate, energy consumption, or impurity 
levels. The trained model shows a low mean squared error and a 
high coefficient of determination (R-squared) when compared to the 
validation and testing datasets. This indicates that the model effectively 
captures the complex relationships between the input variables and the 
desired outcomes.

The neural network-based expert control system enables real-time 
monitoring of the electrolytic process [9]. Process variables, such as 
current density, temperature, and pH, are continuously fed into the 
model, which provides immediate predictions of the desired outcomes. 
This real-time monitoring capability allows for proactive decision-
making and prompt adjustments to optimize the process. The expert 
control system facilitates process optimization by providing insights 
and control actions based on the predictions of the neural network. 
By analyzing the relationship between the input variables and the 
desired outcomes, the system can identify optimal process conditions 
that maximize zinc recovery, minimize energy consumption, or 
reduce impurity levels. The ability to optimize the process in real-time 
contributes to enhanced process efficiency and product quality.

The neural network-based control system exhibits adaptability to 
changing process conditions. As the process variables fluctuate, the 
model adjusts its predictions accordingly, providing dynamic control 
recommendations. This adaptability is crucial in handling variations 
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in ore composition, impurity levels, or other operational factors, 
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