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Abstract

The pathogenic mechanism of the infectious salmon anemia virus (ISAv) remains unknown. One methodological
approach for solving this unknown is to understand the roles of each viral component separately. Therefore, the
present study evaluated the viral nucleoprotein (NP) of ISAv to establish effects to reactive oxygen species (ROS)
production and SUMOylation profile balance. Salmon head kidney-1 cells transfected with NP evidenced a strong
respiratory burst activation and the genic induction of p47phox, SOD, GLURED, and Bad. Additionally, NP-



hydroxyethyl)-1-piperazineethanesulfonic acid (10 mm; pH 7.0),
sodium bicarbonate (1 mg/mL), gentamicin (20 µg/mL; Gibco), and
10% fetal bovine serum (Hyclone, GE Healthcare Life Sciences, USA).
Transfection kinetics considered 8, 16, and 24 h. Parallel experiments
included co-stimulation with H2O2 (100 μM; Merck, USA) or with the
pharmacological inhibitor apocynin (1 µM) [12]. Cell viability was
>95% for all experimental cultures. At each sampling time-point,
mRNA or protein was extracted and analysed.

NP transfection
SHK-1 and VERO cells were respectively seeded onto 12 and 6-well

plates. SHK-1 cells were incubated at 16°C in 10% L-15 supplemented
by 10% fetal bovine serum and 1% antibiotics (penicillin/
streptomycin). VERO cells were incubated at 37°C in a humid
atmosphere (5% CO2) and in DMEM supplemented with 10% fetal calf
serum and 1% antibiotic (penicillin/streptomycin). Both cell lines were
incubated 24 h before transfection (≈80% confluence).

Cells were transfected with the pGFP-N1-NP plasmid (SHK-1=1000
ng cells; VERO=2500 ng cells) using Lipofectamine 2000 (Invitrogen,



Results

NP increases p47phox expression
First, NP was overexpressed in SHK-1 cells (Figure 1), and

expression levels were then determined via RT-qPCR (Table 2) and
Western blot for p47phox (Figure 2), detoxifying oxidative stress genes,
and molecular markers involved in apoptosis.

Figure 1: SUMO protein expression profiles. (Top) Lane 1: VERO
cell line (negative control). Lane 2: VERO cells transfected with
pEGFP-N1. Lane 3: VERO cells transfected with pEGFP-N1- NP.
Lane 4: VERO cells transfected with pEGFP-N1 in the presence of
H2O2 (100 µM). Lane 5: VERO cells transfected with pEGFP-N1 in
the presence of apocynin (10 µM). (Bottom) Load control using
HSP70. Gene expressions were normalized against HSP70 and are
shown relative to the mean expression of non-transfected cells (Line
1). Each bar represents the mean ± SE of triplicate samples. *P<0.05
versus non-transfected cells. The results are representative of three
independent experiments.

At 8 h post-transfection, p47phox expression was strongly increased
and was nearly tripled at 24 h post-transfection. In the presence of
H2O2, p47phox expression increased by 400%, but in the presence of
apocynin, transcripts returned to basal levels (Table 2). Prior research
revealed pro-apoptotic markers and oxygen radical detoxifiers
modulated during viral infection. Therefore, the effects of NP
overexpression on these transcripts were assessed. At 8 h post-



of a foreign protein resulted in a 7% decrease in the SUMOylation
signal level (Lane 2), a decreased that was much more drastic (47%) in
NP-transfected cells (Lane 3). These findings are likely the
consequence of a robust imbalance cellular ROS levels, as apparently
mediated by NP. In cells transfected with NP and incubated with
H2O2, the SUMOylation signal level slightly intensified (57%; Lane 4),
while blocking of NADPH oxidase complex activity strongly increased
the SUMOylation signal level (91%; Lane 5). These analyses strongly
suggest that NP can modify cellular SUMOylation levels, apparently by
increasing NADPH oxidase activity (Figure 3).

NP increases NADPH-mediated ROS production
To corroborate the strongly suggested capacity of NP to modulate

the NADPH oxidase complex, with consequent ROS increases and
SUMOylation profile changes, the effect of NP on ROS production in
the absence/presence of apocynin was assessed. Oxidative stress in
SHK-1 cells was detected and quantified using the CellROX reagent, a
fluorogenic probe. The obtained results showed a robust fluorescent
signal that was higher in cells transfected with NP than with H2O2
(Figure 4). In contrast, SHK-1 cells treated with apocynin had weakly
decreased fluorescent signals in the cytoplasm. These results
substantiate the ability of NP to activate the NADPH complex, a
producer of cellular ROS.

4. Discussion
Orthomyxoviridae viruses have been extensively studied due wide

reaching impact on public health. Nevertheless, essential aspects of the
infection mechanisms of these viruses remain unknown. Therefore,



Figure 4: Suggests the imbalance in cellular SUMO activity.

Conclusions
In conclusion, ISAv infection induces an NP-mediated induction of

genes encoding for NADPH oxidase components, pro-apoptotic
markers, and ROS detoxifier components in SHK-1 cells. Moreover,
NP was able to post-translationally modify the cellular protein profile,
acting as an oxidative stressor in fish cells.
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