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onset. In keeping with the view of adolescence as a time of particular 
vulnerability to developmental perturbations, cross-sectional studies 
reveal that regionally speci�c e�ects of early stressors in the amygdala 
are most prominent during adolescence [18]. We therefore examined 
currently healthy young people who self-reported early exposure 
to a range of extreme stressors. Self-report measures of early trauma 
(natural disasters, family illness/death, experiences of bullying etc.) 
have been previously linked to reduced amygdala volumes in young 
people [18,26,27], however the impact of such stressors on functional 
connectivity in youth have not been widely explored [28]. Concurrent 
examinations of trauma-related changes in both brain structure and 
functional connectivity have been limited to adult populations or to 
task-speci�c activation paradigms [16,29]. 

�e current study employed structural and functional magnetic 
resonance imaging to examine grey and white matter volume estimates 
by means of voxel based morphometry (VBM), as well as e�ective 
functional connectivity by means of spectral dynamic causal modelling 
(spectral DCM; spDCM) within the amygdala-hippocampal network 
in currently-healthy adolescents. Importantly, any neural di�erences 
between stress exposed individuals versus unexposed individuals 
should not be driven by current psychopathology, as all participants 
were free from current psychopathology. 

Materials and Methods
Participants and centers

A large cohort of 298 healthy adolescents [152 males, range: 14-24 
years, mean = 19.1 ± 2.9 (SD); 146 females, range: 14-24 years, mean = 
19.1 ± 2.9] were scanned over 1½ years at 3 sites: (1) Wellcome Trust 
Centre for Neuroimaging (WTCN), London, (2) Medical Research 
Council Cognition and Brain Sciences Unit (MRC CBSU), Cambridge, 
and (3) Wolfson Brain Imaging Centre (WBIC), Cambridge. �e study 
received ethical approval from the NRES Committee East of England 
- Cambridge Central (12/EE/0250) and all participants gave written 
informed consent. �is study was conducted by the NeuroScience 
in Psychiatry Network (NSPN), which addresses how psychiatric 
disorders are related to abnormal maturation of brain systems.

Selection of participants with histories of abuse and neglect

�e Structured Clinical Interview for DSM-IV (SCID) was 
administered by a trained research assistant and audio recordings were 
made with the informed consent of participants. During the course of 
these interviews 29 participants were identi�ed (10 female, mean age 
20.45 years) who self-reported histories of trauma (a solitary trauma), 
including experiences of physical or sexual abuse, having been in a life-
threatening situation (e.g. natural disaster, car accident, drowning), 
physical/sexual assault, death of a parent or sibling or witnessing/
hearing about actual or threatened death to others over the course 
of childhood. �e control group (mean age: 20.53 years) was created 
by matching each trauma-exposed participant to a non-exposed 
participant in terms of gender, age and parental education levels (as a 
proxy for socio-economic status). �ere was no signi�cant di�erence in 

handedness between the two groups. Table 1 shows demographic data 
of participants.

Data acquisition and preprocessing

Structural MRI

All multi-parameter maps (MPM) were acquired on 3T whole body 
MRI systems (Magnetom TIM Trio, Siemens Healthcare, Erlangen, 
Germany; VB17 so�ware version) operated with the standard 
32-channel radio-frequency (RF) receive head coil and RF body coil 
for transmission. �e MPM comprised three multi-echo 3D fast low 
angle shot (FLASH) scans with PD (TR/α = 23.7 ms/60), T1 (TR/α = 
18.7 ms/200), and MT (TR/α = 23.7 ms/60) - weighted contrast, one RF 
transmit (B1) �eld map and one static magnetic (B0) �eld map scan 
[30]. 

�e MPM acquisition and pre-processing were developed and 
optimized in previous studies and are widely described elsewhere [30-
36]. �e post-processed MT maps resulting from this step were used in 
our VBM analyses.

Functional MRI

At all three sites, fMRI data were acquired on 3T whole body MRI 
systems (Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany; 
VB17 so�ware version) operated with the standard 32-channel radio-
frequency (RF) receive head coil and RF body coil for transmission. 
269 contiguous multi-slice images were obtained with a multi-echo-
planar sequence (orientation = AC-PC line, number of slices = 34; slice 
thickness = 3.8 mm; FOV = 240 mm; TE1 = 13 ms; TE2 = 31 ms; TE3 = 
48 ms; TR = 2.420 s; �ip angle = 90°; matrix size = 64×64×34; voxel size 
= 3.8×3.8×3.8 mm3).

�e fMRI data were analysed using procedures implemented in 
Statistical Parametric Mapping (SPM8, Welcome Trust Centre for 
Neuroimaging, London, UK; http://www.�l.ion.ucl.ac.uk/spm). First, 
the fMRI data were summed up over the three echoes. Data were 
then realigned, co-registered, anatomical images were normalized to 
MNI space, and the resultant normalization matrix was then used to 
normalize the fMRI data. Finally, the data were visually inspected and 
spatially smoothed using a 6 mm Gaussian kernel. Ultra-low frequency 
�uctuations were removed using a high-pass �lter (1/128 s, 0.0078 Hz). 
Confound time-series were extracted from prede�ned coordinates of 
extra-cerebral compartments (the pons: x, y, z = 0, -24, -33; and lateral 
ventricle: x, y, z = 1, -43, 6).

We extracted data exhibiting physiologically-relevant resting-state 
(i.e. low frequency) dynamics from our region(s) of interest (ROIs): 
le� and right amygdala, and le� and right hippocampus, which were 
anatomically de�ned using the PickAtlas so�ware (WFU PickAtlas, 
ANSIR Laboratory, Winston-Salem, NC, USA; http://fmri.wfubmc.
edu/so�ware/PickAtlas). �e resting-state was thus modelled using a 
General Linear Model (GLM) with a discrete cosine basis set (GLM-
DCT) consisting of 130 functions with frequencies characteristic 
of resting-state dynamics (0.0078 – 0.1 Hz [37-40]), six nuisance 
regressors capturing head motion, and the confound time-series from 
the extra-cerebral compartments. �e regional BOLD signal was 
summarized with the principal eigenvariate (adjusted for confounds: 
head movements and extra-cerebral compartments) of voxels within 
6 mm of the subject’s peak coordinate, as identi�ed using statistical 
parametric mapping. For those familiar with the process of extracting 
ROIs, this was achieved by using an F-contrast including the discrete 

Trauma-exposed 
participants

(N = 29)

Non-exposed 
participants

(N = 29)
p-values

Age [years]
20.53 ± 2.77
range 16-25

20.45 ± 2.61
range 16-25

0.9087

Sex [Male/Female] 19/10 19/10 1.0000 

Parental education [years] 18.05 ± 8.03 16.15 ± 6.18 0.3153 

Table 1: Demographic data of selected participants.
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cosine set modelling the resting-state. �is procedure allowed us to 
extract physiologically relevant resting-state data from the anatomically 
de�ned regions for each hemisphere.

Spectral dynamic causal modelling (spDCM). Effective 
connectivity estimates. Spectral dynamic causal modelling 
(spectral DCM; spDCM) is based on deterministic models that 
generate predicted crossed spectra from a biophysically plausible 
model of coupled neuronal �uctuations in a distributed neuronal 
network [41]. In this setting, the nature of the endogenous 
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Multiple linear regression models
To test the hypotheses that spDCM parameter estimates were 

di�erent between groups, we carried out linear regression analyses. 

We �rst calculated the averaged spDCM parameters from resting-
state fMRI data. �is was followed by a multiple regression analysis 
explaining spDCM estimates by a constant, age, di�erentiating between 
males and females (in order to identify gender-speci�c e�ects), poverty 
scores, group, and scanner site. �e correlation was modelled as:

spDCMi = β1
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GMVi = f(group)
Negative associations

p-values (unc.)

GMV (rAMYG)
GMV (rHF)

GMV (lAMYG)
GMV (lHF)

0.3627
0.2938
0.4837
0.1808

Table 3: Significance levels (p-values ) for negative associations between group 
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the spectral DCM algorithm together with the Bayesian comparison 
procedure implemented here may be further improved by searching 
for optimal region-speci�c �uctuation models (and observation 
noise) rather than assuming the same generative model across regions 
(from AR1 up to AR16 processes). Although that approach may have 
advantages and potentially reveal some other statistical e�ects, it is 
computationally very expensive due to estimation of a very large number 
of models. Second, analyses suggest the use of other statistical correction 
strategies rather than FDR (e.g. a random �eld theory approach). �e 
reason for this is that FDR does not take into account autoregressive 
models (i.e. the temporal structure), nor brain regions (i.e. the spatial 
structure) and deals with all parameter estimates as independent of each 
other. �ird, VBM is commonly directed at examining gray matter but it 
can also be used to examine white matter. In the latter case, however, the 
sensitivity is limited because white matter areas are characterized by large 
homogeneous regions with only subtle changes in intensity [51]. Finally, the 
use of the SCID interview to select participants with traumatic life events 
may be criticized as being too structured (and diagnostically focused), 
potentially not enabling all former traumatic experiences to be revealed. 

In summary, our �ndings demonstrated abnormal structural-
functional maturation of the right amygdala in currently-healthy young 
people exposed to traumatic events. Together, these �ndings are suggestive 
of potential biological markers over the course of adolescence that may 
have prognostic utility for PTSD or depression. Indeed, our observations, 
both in white-matter and intrinsic connectivity within right amygdala are 
very interesting and intriguing, however the reason, i.e. the underlying 
biological mechanisms that lead to these observations, remain an open 
question since only a small body of research has been conducted on this 
topic so far.
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