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mainly from the phyla Firmicutes (30%-50%), Bacteroidetes (20%-
40%), followed by Actinobacteria and Verrucomicrobia. This complex, 
diverse and dynamic communities of microbiota are known to play 
a significant role in health. The microbiota participates in digestion 
and extraction of nutrients, protection against infection, in the host 
immune response, drugs metabolism and is also involved in regulation 
of host metabolism [14]. We can divide the microbiota in mucosa-
associated and luminal flora, whether the microbes penetrate the 
mucosal layer or are located in the lumen [15]. The luminal bacteria are 
less abundant than the mucosa-associated bacteria [16]. Furthermore, 
when comparing microbiome from stool and mucosal tissue samples, 
different populations are found [17]. The colonic mucosal communities 
are adherent to surface-associated polysaccharide matrices and 
are therefore less affected by hydrodynamic shear forces. These 
communities rooted to the mucosa interact with the immune system 
and appear to be more relevant to diseases such as CRC.

Methods
For this review, a literature search was performed using the PubMed 

database. The search key terms were (“microbiome” or “microbiota” or 
“intestinal flora”) and (“colorectal” or “colon” or “rectal” or “rectum”) 
and (“cancer” or “neoplasm” or “neoplasia”). Only articles published 
in English and during the period of January 2013 to June 2016 were 
selected. The articles of the initial search have been screened for their 
potential eligibility according to the content of the title and/or abstract. 
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Harnold et al proposed a bacterial counterpart of the genetic 
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Ohigashi et al detected lower concentrations of short chain fatty 
acids in feces of CRC individuals, and an associated increase in pH. 
More precisely, three types of organic acids (acetic acid, propionic acid 
and butyric acid), usually the most abundant in the gut, were reduced 
[37]. Short chain fatty acids are important final products of bacterial 
carbohydrate fermentation in the gut. Butyrate in particular is thought 
to be important in maintenance of a healthy intestinal environment. 
It’s considered to be the preferred energy substrate for the colonocytes, 
and apparently stimulates a physiologic pattern of cell proliferation 
and suppresses tumor cells proliferation in the colonic crypts. It also 
participates in the maintenance of intestinal acidity, prevention of 
toxin absorption and promotion of cancer apoptosis [38]. According 
to Hold et al, some of the main butyrate-producing bacteria are 
Roseburia intestinalis, Faecalibacterium prausnitzii and Eubacterium 
hallii [39]. In Tables 1 and 2 we can see that Faecalibacterium and 
Roseburia were found diminished in CRC/adenoma cases in some 
studies. In adenoma cases, fecal short chain fatty acids and pH were 
intermediate between normal individuals and CRC cases, and there 
were no differences detected between different CRC stages. This 
suggests that these variations are not consequent to the cancer itself 
[40] Baxter et al. found a negative correlation between the number of 
tumors and butyrate production capacity. It was also found a positive 
correlation between tumor count and mucin degradation. Disruption 
of the mucosal barrier integrity by mucin degradation could possibly 
lead to increased inflammation in Figure 2. These are some of the 
main mechanisms that are thought to take part in promotion of 
carcinogenesis by bacterial populations. However, there’s a much 
wider range of possible interactions and mechanisms studied and a lot 
of questions to answer.

Beneficial roles of bacteria

Many authors hypothesized that certain bacteria may have a role 
in protection against pathogens and possibly prevent the progression 
of cancer. Feng et al observed that some of the control-enriched 
species were lactic acid-producing bacteria Bifidobacterium animalis, 
Streptococcus mutans and S. thermophilus. Lactic acid participates in 
gut acidification and inhibits intestinal amino acid degradation. It was 
also reported to accelerate colon epithelial cell turnover in mice. There 
is evidence that advanced colorectal adenoma or carcinoma patients are 
deficient in lactic acid-producing commensals such as Bifidobacterium, 
that could potentiate daily epithelial renewal and inhibit potential 
pathogens [41]. Lactococcus also a lactic acid-producing bacteria, were 

over-represented in CRC patients besides playing a probiotic role in 
colon. Short chain fatty acids are important microbial metabolites 
and butyrate has been shown to have substantial anti-tumorigenic 
properties [42]. Butyrate is thought to be important in the maintenance 
of a healthy intestinal environment, participating in several benefic 
and antitumoral processes. Some of the main butyrate-producing 
bacteria (Roseburia intestinalis, Faecalibacterium prausnitzii) were 
found diminished in CRC/adenoma cases in some studies. This loss 
of short chain fatty acids producing bacteria populations is likely to 
play a synergistic role in potentiating tumorigenesis [43]. Lactobacillus 
spp. interacts with the host by binding to human mucus and they 
are currently used as probiotics. It is not yet understood if the effect 
is direct (through immune modulation, for example) or indirect (via 
alteration of the intestinal microbiota) [44].

Clinical Relevance
Zackular et al. identified a panel of bacterial populations that could 

indicate both the progression from healthy tissue to adenoma and 
the progression from adenoma to carcinoma, and created a screening 
model combining BMI, FOBT, and the microbiome data. This model 
provided excellent discriminatory ability. They also compared the 
microbiome test with the FOBT, and assessed that the likelihood ratio 
of a positive FOBT was lower than the likelihood ratio of a positive 
microbiome test. For better understanding, they explained that for a 
65 years old person with a positive FOBT, there was a 1 in 15 chance of 
having an adenoma. This contrasts with 1 in 9 chances using a positive 
microbiome test in the same 65-year old. It was concluded that the 
sensitivity of the microbiome test was greater than the sensitivity of 
the FOBT [45].

George Zeller et al. used metagenomics to explore microbiota 
potential for CRC detection, hypothesizing that a combination of 
marker species could be used to improve screening. They selected 
the four most discriminative species, (two Fusobacterium species, 
Porphyromonas asaccharolytica and Peptostreptococcus stomatis) 
enriched in CRC patients. This metagenomic classifier proved to 
be slightly better than FOBT. They also combined the two tests and 
obtained sensitivity 45% higher than FOBT alone. The authors then 
assessed for external validation, applying the classifier in cohorts from 
different countries. They concluded that high accuracy detection was 
still possible even with cohort differences. It was also concluded this 
classifier has potential for early detection, since the sensitivity was 
similar for early-stage and late-stage CRC. These markers were also 
tested in IBD patients, and the most discriminative markers were all 
significantly higher in CRC, proving its specificity for CRC (29). The 
future application of these markers in population screening relies 
on the development of cost-effective methods. With this in mind, 
Zeller et al tested an alternative 16S sequencing classifier for CRC, 
and it accomplished almost as good an accuracy as the metagenomic 
model [46]. A recent study tested the effect of probiotic Lactobacillus 
salivarius REN
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