Ac. a ed , dBe-ba ed , e e c B ba c eac. (SBR) , a e c e , . . . e f e a a B Ba c c e e . [8]. e SBR . ec , B = , e, d c e . ed , ab a [5,9], ca e [10] a d f (-, ca e) d e [11,12]. e b e ac. ca be a aa b c, aa b c a $_{-}$ c [3]. Eac a e a f e e a a b c, aa b c a b c a d d a [9]. Ta $_{--}$ B be, ee a aa b c, aa b c a d a $_{-}$ c c d $_{--}$ = Ba e e f d a e e e c d $_{--}$ a d ac e c $_{--}$ A f ca b $_{-}$, - Be a d $_{--}$ E Be.

*Corresponding author:

Received

Accepted

Citation:

Published

PP. f. ce, a \mathbf{M} , [3]. O \mathbf{M} e ac, a a e ec, acce. [10]. S, ce, ..., e e ea e, e a a b c, a e, e, a f, e ed da ao, b c/a, cc, d, d_{r} , e, e, e e, a f, e ed a ao, b c/a, cc, d, d_{r} , e, e, ed f, e b, eac, b a \mathbf{M} e ce, \mathbf

I, c_{μ} b, ed de a ca., a d BPR. ... e_{μ} , ca b, a a ab. ... e_{μ} a fac. ... De a a d PAO. a e_{μ} c, e_{μ} , f. . ea a ab e ca b, ... B, ... ce e a e d... bed b ... c, e_{μ} , f. e ce a e ba a ce., d be a c , ... e e g f. e aa b c a d a, c_{μ} a e [10].

e c, $\ensuremath{\mathbb{Z}}$ a, d, e a., f SBR de e d, . e. e, f e, a.e. a a d. e a ea, e. b ec. e [3]. SBR ca be a ao b c, ao b c, a _ c [8]. M. f. e SBR a e, e, f. e e a e $\ensuremath{\mathbb{Z}}$ a fe . ee a ec, b a [3,16]. Be de , eb - . e of, a cee c e c de e d . e e e a ao a $\ensuremath{\mathbb{Z}}$ e e, f. e e a e, e d a feac a e, d a c e e , e, d $\ensuremath{\mathbb{Z}}$ e e, $\ensuremath{\mathbb{Z}}$ e

Ma e ial and Me hod

Model eac o

a d a a ed a , e a a e e a a b c a d a b c SBR a e eeded . a a b c a d a b c d de b a ed f a $be_{\varphi} e_{\varphi}$, $a \cdot e_{\varphi} a \cdot e_{\varphi}$, $a \cdot e_{\varphi} a \cdot e_{\varphi}$, $a \cdot P_{\varphi} a \cdot e_{\varphi}$, be_{φ} , $L = e_{\varphi} a$, $U_{\varphi} a$, da. $e_{-} = a c, ce, a a, f, e ed_{-}, a e e, ded_{-}, d$ (MLVSS) a a = 10,000 B/L. e eac, e e b c - fed, f, a.e, a.a fed., . e. .e. . A.a ..ead - .a.e c, d., v @ e ba, ed (3, ...), e e eacher, e e , e a. ed. e, e, a. (Egee 1), -. eac eac., -, a c c e c, -, B, f. e feed, eac., , e. a a, d, d a a e e 24 e a B c c e c, - ed, f. e f, a d a d : (a) a B 0.30 e ; (b) e a c , 41 e ; a d (c) deca, \mathbf{a} , \mathbf{a} , $\mathbf{0.30}$, \mathbf{e} , \mathbf{f} , \mathbf{e} , \mathbf{a} , \mathbf{a} , \mathbf{b} ce eac., \mathbf{e} , \mathbf{a} , \mathbf{d} (a) \mathbf{e} , \mathbf{a} , $\mathbf{0.25}$, •, ; (b)• eac., , , 17 •; (c) e., \mathbf{B} , 6.5 , •, a, d (d) deca, \mathbf{A} , \mathbf{B} , 0.25 , e f.e. e ao , b c e e ac , e . A . e e, d , f e ac c c e, 100 , a e , f . e , a , a , a deca, ed, f, , , ed b feed, Ø, fa, e, a a , ,. fa.e.a.e.e.e.a.eda.a., _, a.S. de Re.e., T. e (SRT), f5 da a, da...a. H da_c Re.e., T. e (HRT), f 2 da a, d 1 da f, e a a a, b c a, d a a, b c/a, $\int_{-\infty}^{+\infty} c$ SBR, e ec. e . T e $\mathbf{B}_{\mathbf{a}}$ c , ad $\mathbf{B}_{\mathbf{a}}$ a 12.8 \mathbf{B} COD/ $^{3}/da$, de, Ø. e. d. e., d. Te, e., e.e., f, a.e, a.e. edde, Ø e e , a de a e , , , , Tabe 1.

Anal ical oced e

P _ ca , a. a. a. a. b. e. (H, e. eca , c. d. c. ... a. d. .e. (H, e. eca , c. d. c. ... a. d. .e. ea. ed. in situ

e, c, ce, a, fTCOD, SCOD, BOD₅, TKN, NH₄-N, NO₂-N, O₃-N, TP, o-PO₄³⁻, **b** d., TSS, H, EC a, d.e, a a, e, a e 321, 75, \blacksquare/L , 923 12, \blacksquare/L , 1210 32, \blacksquare/L , 383 20, \blacksquare/L , 233 7, \blacksquare/L , 0, \blacksquare/L , 0, \blacksquare/L , 81 1, \blacksquare/L , 67 5, \blacksquare/L , 2762 50 FAU, 1350, 47, \blacksquare/L , 0.91 0.1, \blacksquare/L 6.98 0.04, 2.91 0.17, S/c, a, d 23.84 0.11 C, e, e, c, .

I. e ao. b c-a, $_c$ a e, TCOD, SCOD, BOD₅, TKN, NH₄-N, TP, o-PO₄³⁻, b d., TSS a d.e. e a. e e , a e c e c e e 98, 96, 97, 91, 97, 86, 90, 74, 89 a d 14% e ec. e , $_c$ e e. ea, c ce. a. f 80 5 Ø/L, 31 10 Ø/L, 54 12 Ø/L, 35 4 Ø/L, 8 1 Ø/L, 18 1 Ø/L, 8 1 Ø/L, 738 9 FAU, 254 12 Ø/L a d 22.04 0.02 0.1 C, e ec. e . C, a ab., NO₂⁻, NO₃⁻ a d DO, $_c$ ad. e a ed. a b c a e b 115, 184 a d 94% dec ea ed. a $_c$ a e b 100, 98 a d 93%. eØ. e a e e. c, ce. a e, f 0.00 0, 16 8 a d 1 3 Ø/L, e ec. e . D $_$ Ø. a e H, EC a d.e ea ed. a e e. a ed f 6.71, 1.64 /c ³,

-, ' e, c, ce a., f TCOD, SCOD, BOD₃, TKN, NH₄-N, TP, o-PO₄³, bd., TS, H, EC a, d.e a.e. e e e 15812 241 \blacksquare L, 3176 100 \blacksquare /L, 13659 67 \blacksquare /L, 1022 139 \blacksquare /L, 58 9 \blacksquare /L, 61 8 \blacksquare /L, 16 1 \blacksquare /L, 9335 130 FAU, 10760 300 \blacksquare /L, 6.57 0.12, 1.86 0.2 /c ³ a, d 23.53 0.1 C, e e c. e

e e , a e ce ce f TCOD, SCOD, BOD₅, TKN, b d. a dTSS e e79, 76, 86, 61, 70 a d79% e ec. e , . e e , ea c ce a f 3554 58 J/L, 762 3 J/L, 1869 27 J/L, 400 30 J/L, 2800 9 FAU a d 2307 21 J/L e ec. e . C a ab , NH₄-N, TP, o-PO₄³, H, EC a d.e a a e ce a ed b 80, 71, 81, 0.2, a d 38% e a e e. c ce a f 288 7 J/L, 129 1 J/L, 82 1 J/L, 6.56 0.03, 3.02 0.01 /c a d 25.7 0.2 c, e ec. e .

T ea men of aba oi e en in ae obic/ano ic e encing ba ch eac o

 a d $22.04 \pm C$. 7.64, 7.71 /c ³ a d $25.32 \pm C$. evaluation at e e. c, ce, a. f 7.00 0.0, 1.64 0.01 /c ³ a d 22.04 $0.02 \pm C$, e e. c. e.

Di c ion

A ed c, _, SCOD_, $E \boxtimes e 2$, a d e., _e, ba, ac... _e., a COD, TSS a d. bd. ed c, _, e ed e., _e, ba, ac..., _, _d e., e e. a d/, a.a., [10,14]. A ae, bc _, a e a a ed b \boxtimes TKN ed c, (E $\boxtimes e 3$) d e., e., \boxtimes f. e b, d [20]. He e, _, _c a , _ ca, f. e deceaed \boxtimes \boxtimes a, c - , \boxtimes e, _ a , ce . a a , _ d ce CO₂ a d HCO₃ [14]. e

HCO₃, e, d c., , e, a ea ed. e. e a a . , a, d. . , H, , e e a , , ca., e a ed. e H a, d EC [21].

C, a ed. . e, r e. a, a.e, a.e, . e. ea, e. e. ce ce ce b.a, ed f. . e. eac. e. e \square b. . . d. . ee. a, a d. c a ge. a da d (COD, 100, g/L; TSS, 100, g/L; T b d., 300 NTU/FAU; NH₄, N, 10, g/L, TN, 10, g/L; . . . P, 5, g/L a d

 a_{-} , b_{-} , e_{-} , a_{-} , a

N f ca, .a. ed, ce. e DO a, d H, ee, e a, cabe a, ee, f 6.9. A, a d ed, NO_2^{-} , c d ed, be e, c d ed, NO_3^{-} , ce, a d, [3]. The e, a, e d e c, ce, a d, f NO_3^{-} , a, NO_2^{-} a, e e, d, f a b, b, a e (E ee 6).

I, eau, bc, a e, e, \mathbb{B} a, c, a.u, u, e a. ee, eca, d, , e , _e, e, \mathbb{B} e, u, e a. ee, eca, acce, [8]. He, u, a a a $a = \mathbb{B}$ u a , f, \mathbb{N} H₄, \mathbb{N} a, d, \mathbb{B} e, a, a a a, a, [12]. PAO, be, \mathbb{B} e.u, a, , , efue, a, .a e , \mathbb{B} e, a, d d, .e. e Diversity and functions of the microorganisms involved in nitrifcation and denitrifcation. Soil Science and Plant Nutrition 54: 33-45.

Pedros PB, Onnis-Hayden A, Tyler C (2008) Investigation of nitrifcation and

Szatkowska B (2007) Performance and control of biofIm systems with partial