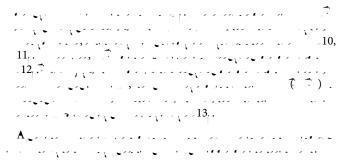
Comments on Article Continuous Shortwave Diathermy with Exercise Reduce Pain and Improve Function in Lateral Epicondylitis More than Sham Diathermy: A randomized Controlled Trial

Dimitrios Stasinopoulos*

Department of Physiotherapy, Faculty of Health and Caring Sciences, University of West Attica, Member of Laboratory of Neuromuscular and Cardiovascular Study of Motion. Athens. Greece

Commentary


 $A_{i} = A_{i} = A_{i$

*Corresponding author: Dimitrios Stasinopoulos, Assistant Professor, Physiotherapy, Dept. of Physiotherapy, Faculty of Health and Caring Sciences, University of West Attica, Member of Laboratory of Neuromuscular & Cardiovascular Study of Motion (LANECASM), Agiou Spyridonos 28, Egaleo 12243, Athens Greece, Email: dstasinopoulos@uniwa.gr

Received January 09, 2021; Accepted January 26, 2021; Published February

Citation: Stasinopoulos D (2021) Comments on Article Continuous Shortwave Diathermy with Exercise Reduce Pain and Improve Function in Lateral Epicondylitis More than Sham Diathermy: A randomized Controlled Trial. J Pain Relief 10: 366.

Copyright: © 2021 Stasinopoulos D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

References

- Babaei-Ghazani A, Shahrami B, Fallah E, Ahadi T, Forough B. et al. (2020). Continuous shortwave diathermy with exercise reduces pain and improves function in Lateral Epicondylitis more than sham diathermy: A randomized controlled trial. J. Bodyw. Mov. Ther. 24: 69-76.
- Stasinopoulos D, Johnson MI. (2006). 'Lateral elbow tendinopathy' is the most appropriate diagnostic term for the condition commonly referred-to as lateral epicondylitis. Med. Hypotheses. 67:1400-2.
- Belanger AY. (2015). Therapeutic Electrophysical Agents. Evidence Behind Practice. Wolters Kluwer, 3rd edition.
- Cyriax HJ, Cyriax JP. (1983). Cyriax's illustrated manual of orthopaedic medicine. Oxford: Butterworth-Heinemann.
- Stasinopoulos D, Johnson MI. (2004). Cyriax physiotherapy for tennis elbow/ lateral epicondylitis. British Journal of Sports Medicine. 38:675-677.

- Tzima E, Martin CJ. (1994). An evaluation of safe practices to restrict exposure to electric and magnetic felds from therapeutic and surgical diathermy equipment. Phys. Meas. 15: 201-206.
- Malliaras P, Barton C, Reeves N, Langberg H. (2013). Achilles and patellar tendinopathy loading programmes. A systematic review comparing clinical outcomes and identifying potential mechanisms for efectiveness. Sports Med.43:267–86
- Martinez-Silvestrini JA, Newcomer KL, Gay RE, Schaefer MP, Kortebein P. et al. (2005). Chronic lateral epicondylitis: comparative efectiveness of a home exercise program including stretching alone versus stretching supplemented with eccentric or concentric strengthening. J. Hand Ther.1:411-9.
- Malliaras P, Cook J, Purdam C, Rio E. (2015). Patellar Tendinopathy: Clinical Diagnosis, Load Management, and Advice for Challenging Case Presentations. J. Orthop. Sports Phys. Ther. 21:1-33.
- Stasinopoulos D. (2017). Strengthening of supinator in the management of Lateral Elbow Tendinopathy. AMJ.10:373–374.
- Stasinopoulos D. (2017). Scapular and rotator cuf strengthening in patients with lateral elbow tendinopathy. Hong Kong Physiotherapy Journal. 37:25-26
- Juul-Kristensen B, Lund H, Hansen K, Christensen H, Danneskiold-Samsøe B. et al. (2008). Poorer elbow proprioception in patients with lateral epicondylitis than in healthy controls: a cross-sectional study. Journal of Shoulder and Elbow Surgery. 17(1 Suppl). 72S-81S.
- Rio E, Kidgell D, Moseley GL, Gaida J, Docking S. et al. (2015). Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review. Br. J. Sports Med. 50:209-215.