

Open Access

Keywords: Machi e lea_i g; E , i e al ic l g ; P ll i

Introduction

Ne ℓ edica i 1, i d₁ - jalche ical, a di 1 ec icide a-eo 1 e ial h a aci i . e che ical ab ac 1 e, ice (CAS) c₁ - e l ha , e 144 illi che ical c · di a di e, e co egi e ed, ℓ i h , e 12,000 e · b a co bei gadded dail [1]. e CAS da aba o ha e h ℓ a e · e ial je i · cie i c · blica i · a d o ea ch i hea ea fdi c, e i ga d he i jica e a d i e c ec ec ec che ical ha a d <u>1 o i · o i · o a</u> d · bable(a h / a + [3, 4, 5].

Environmental toxicology disclosure: moving from hypothesis- to data-driven

e l a i fe, i e al ici [6, 7, 8].

Det ie ha i g e ____t t e ial f _ t l i g e i _ e al ici int e, MLt ill ha di c l ie i _eal-/_ld+e i g. e / bigge t _ ble + / ih ML a t lica i + a ei ade a eda a a dli i ed del t a dabili . ec.ea i f del a d het edici f e/ che ical a ec + _ai edb he lack fc t a able ic l gical da a. Da a t e, e a he ba i f _ ML del. T ad a ce ML de el t e , i i c _ e l eceta _ add_et he i bala ce, high di e t i ali , a dhe e ge ei fette i e al che ical ici da a et.F _ el che ical, i i, i al de el t e cie ici + c.ee i g e h d a d autet e t a da.dt, et eciall gi e he lack f MLt a da.dt a i [9].

Conclusion

 O_{i} e al ai f_{i} e d i a e f he a ic l gical i, e igai i_{i} illi i g ML a he ha j_{i} a is i g he e is i g li e a e beca e he ela i hi be e ML a de i e al ic l g i i ill i i i f a c a d beca e k / ledge ga a d ech ical li i ai e able. T highligh he f e e i a e e a ch a ea a d e h d l gie, hi e ie e i ail f c e he e e ad a ce i e i e al ici ide i ca i a d e di c i i g ML. e di c i f da a d i e e h d l gie ha a e e, i e al ici i de a c a d e a ch i e al ici i g ML. e di c i i f da a d i e e h d l gie ha a e e, i e al ic l g f ll / 1, f b h he da a a d alg i h ic e a i i c e a i i c e a d, ie e i a e he highligh ed Page 2 of 2