

Abstract

We have developed an accurate, precise and stabilit⁻-indicating 'ow c^ttometr^(FC) based assa^t to directl^{measure} antigenicit[°] of H4 protein in a vaccine formulation of H4-IC31, without desorbing the H4 protein from the IC31 adjuvant. This method involves immuno-staining of H4-IC31 complex with anti-H4 monoclonal antibodies (mAbs) followed b^{FC} anal^{sis}. The assa^t is not onl[°] able to consistentl^{*} measure H4 antigenicit[°] levels

in H4-IC31 stored under normal condition at 2-8[»]C, but also able to detect changes in H4 antigenicit[^] after H4-IC31 undergoes heat stress or free:e-thawing. In addition, the FC method is able to characteri:e particle morpholog[^] while measuring antigenicit[^]. The biological relevance of the changes in H4 antigenicit[^] detected b[^] the FC assa[^] was supported b[^] an in vitro cell based functional assa[^] using human PBMCs to measure IFN-gamma (IFN-) secretion upon re-stimulation with H4-IC31. Our results show that the FC based antigenicit[^] assa[^] can e cientl[^] monitor the biological and ph[^]sicochemical properties of H4-IC31 and is an indicator for adjuvanted vaccine product stabilit[^].