Ke d: C, a $i, k; Ve, Ji a^{i}i, J Me^{i}ha, k; Bi, a^{i}i, J$

I, . , d, c, , ,

T, he e (i, j, j, k) a (i, j, k) a (i, j, k) a (i, j, k) (i, k) ca [i, g, i] ca [i] ($ii \vee i$) [i] a, \mathcal{H} a $\mathcal{H}_{\mathcal{H}}$ hea $\mathcal{H}_{\mathcal{H}}^{\dagger}$, $\mathcal{H}_{\mathcal{H}}^{\dagger}$ i e i \mathcal{H} he a \mathcal{H} he e [6]. O, \mathcal{J} a $\mathcal{H}_{\mathcal{H}}$ ec_ a balle $\mathcal{H}_{\mathcal{H}}$ [$\mathfrak{a}_{\mathcal{H}}$ a $\mathcal{J}_{\mathcal{H}}$ a $\mathcal{J}_{\mathcal{H}}$ a $\mathcal{J}_{\mathcal{H}}$ b i e [ad a \mathcal{L} ed i ac $\mathcal{H}_{\mathcal{H}}$ e $\mathcal{H}_{\mathcal{H}}$ b $\mathcal{H}_{\mathcal{H}}$ d i de e igai , f e ha e f e ca i e ga e e a li e, el i a ed be \bullet 329 i i \bullet 24 \bullet (M^t) ca b \bullet di \bullet ide- fe \bullet i 2005 / ith \bullet gh 70 \P hele \bullet hat e ig a^t i \bullet de ealed al MVA [7]. Ma , e cha e gel f. MVA etha & itigati da e the that e that atte, $\mathbf{j}_i \mathbf{0} \mathbf{j}_i$ i'i, $\mathbf{j}_i \mathbf{j}_i \mathbf{j}_i$ i'i al a de $\mathbf{j}_i \mathbf{g}_i$ ce, the high $i \mathbf{0} \mathbf{0} \mathbf{0}$ at \mathbf{e}_i 50 500 3/ 1) a lithe c fide ab e. a iabi i \P hele a a e A. c $\P f$ ha a tech \P giel ha e bee c A ide ed a li / hi e ab e \P i eati, g MVA, the att act high ca it a a I \bullet att, g c, I a I bea eal el. Bi & ati Atech 2 g il a lafa a l c, lide ab e lafe $a^{i} e^{i} = 1$, $e^{i} = 1$ a ce li i a e a ai ab e ega di 👌 he e e 🕽 a i 🐧 bi 🕈 i a i 🖓 f 🖡 the Ji, g, f etha & at the e itab , f atte Ji, Ja, I high i J, f • a'el , ¶ MVA (f, ¶ a• ece, J• e ie / lee. S' diel ,¶ e'ha, k _ Ji, k $i^{\dagger}h$, $i^{\dagger}h$, $i^{\dagger}h$, b acc. $b \in e$, h h is a a_{1} , b, b e, b Ra(chige i, b_{1} , a

Ma e a a d Me. d

Nit a^te i la a i l(NMS) edi , c a i i l g (NMS) edi , c a i i l g (NMS) edi acc edi g (NMS) edi acc edi g (NMS) edi acc edi g () he Ga a Re[c c Ce le f e Bi gica Ma^ta ia (DSMZ) c la i l d

Briettina Roschele, School of Chemical Engineering, The University of New South Wales, Sydney, Australia, E-mail: bri.roschele@unsw. edu.au

Page 2 of 3

a ii e 1 g MgSO4.7 H2O;0.2 g CaC 2.6 H2O;0.004 g Fe(III) NH4-EDTA; 1 g KNO3;0.272 g KH2PO4;0.717 g Na2HPO4.12 H2O. , i edi /a/i et h_1 L-1 et h_2 (a/i e/h ca b, 2/i, ce $\frac{1}{2}$ acce $\mathbf{a} = \frac{1}{2} \frac{1}{2$ EDTA;0.2 g FeSO4.7 H2O;0.01 g Z SO4.7 H2O;0.003 g M C 2.4 H2O;0.03 g H3BO3;0.02 g C, C 2.6 H2O;0.001 g CaC 2.2 H2O;0.002 g NiC 2.6 H2O;0.003 g Na2M O4.2 H2O. e H The edi \checkmark af acc i a'ed $5.8 \checkmark$ i'h 2 M NaOH. I' \checkmark af a f ocali a'ed b a $5.8 \checkmark$ i'h 2 M NaOH. I' \checkmark af a f ocali a'ed b a $5.8 \checkmark$ i'h 2 M NaOH. I' for 1 2 di (0,0) i 1 2 in 1 2 in 1 2 i 1 2 i (0,0) A fi a ia. C, a cha ac'a 1/10/ a e a ai ab e 1, the f_{-} e e, a fecti , Da'a SI., e c, a / a bale fi ga , i a a d e fi ea d fett ed ; gai, i iecef, 12 3 c ai ha . Me'ha k / i'h a chafti' (199.95, a g, J i'h a chafti' (199.996 a d c e filed ai / a e a'tai d f C, e Gal, A fi a ia. Bi, i a defig, a d' a a i e fi e a'tai d f C, e Gal, A fi a ia. Bi, i a defig, a d' a a i e filed ai / a e a'tai d f C, e Gal, A fi a ia. Bi, i a defig, a d' a a i e filed i / a e a'tai d f C, e Gal, A fi a ia. Bi, i a defig, a d' a a i e filed i / a e a'tai d f C, e Gal, A fi a ia. Bi, i a defig, a d' a a i e filed i / a e a'tai d f C, e Gal, A fi a ia. Bi, i a defig, a d' a a i e filed i / a e a'tai d f (100) (ith 1 L, ¶ [to ie NMS a, • k(i.e. , 1 M. [, Pi]). the effe b, • h bi, $\circ i \in \mathcal{A}$ ai ed ic $\circ e_i$ bat \mathbf{A}^* a $a_i = a_i$ be \mathbf{A}^* be \mathbf{A}^* a \mathbf{A}^* be \mathbf{A}^* be i i d al d ai d A h idi ed e ha d ai gal $\int \text{ice}(1(./.))$ e ha d ai d ai d A h idi ed e ha d a gal $\int \text{ice}(1(./.))$ e ha d i d ai d 2 L/ i $\int a$ a f c \neq i $\int e$ a f d i φ gh each bi φ i a $\int e \cdot a$ a f ha died φ he i he c a bed i φ d i g φ i s NMS edi $(2 \text{ L}) \cdot a$ added i a he φ f each bi φ i a f a died i φ i a died φ he i he c a bed i φ d i g φ i s φ i a died φ he i he c a bed i φ d i g φ i s φ i a died φ he i he c a bed i φ d i gi g i g i a died φ he i he c a bed i φ d i gi g i g• e ai td . the the to feed the ic . bel. Gat a to the a dete i Ati (\mathbf{J}, \mathbf{f}) bi (\mathbf{f}, \mathbf{f}) a f (\mathbf{f}) a ze Metha z a ze \mathbf{f} a ze Metha z a ze \mathbf{f} a deta i de atte ze \mathbf{f} a de ta ze de $_{i}$ is a Shi ad GC-8A gal ch \bullet at g a h(GC) e i ed / i h a gal $\int_{-\infty}^{\infty} d\mathbf{i} = \mathbf{j} = \mathbf{j}$ atte li Ideta i Ed e ati et the i la , A a g Ita Ha d g I ded ea a eal. Bi, e i a fe a te al elti aied. The bale fe bed e^{i} g eafe c a if 4/i h h f dief. Me ha b a ca g IL), e h k i g e c i e k ((f h a), e h a k e i i k i f ca aci^t (EC), a ll ca b, di, ide , d'st' ate (PCO2) / a e ca c_ ated $_{i}$ g he e $_{a}$ a^{i} f i/ ed.

D, **c**, . . , , ,

, e c e e I d high igh I he i ici^t e a^t i I c a - ac ed

Roschele B (2023) For The Reduction of Greenhouse Gas Emissions from Coal Mine Ventilation Air, Employ a Coal-Packed Methane Bio Filter. J Powder Metall Min 12: 344.