Matthew Phillips^{1,2}, Kevin Netto^{1,3}, Warren Payne⁴, David Nichols^{2,5}, Cara Lord^{1,2}, Neil Brooksbank⁶ and Brad Aisbett^{2,7*}

¹School of Exercise and Nutrition Sciences, Deakin University, Burwood, Vic, Australia

²Bushfire Co-Operative Research Centre, East Melbourne, Vic, Australia

³School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia

⁴Institute for Sport, Exercise and Active Living, Victoria University, Footscray, Vic, Australia

⁵Country Fire Authority, Burwood East, Vic, Australia

⁶Tasmania Fire Service, Tas, Australia

⁷Centre for Physical Activity and Nutrition Research, Deakin University, Burwood, Vic, Australia

*Corresponding author: Brad Aisbett, Centre for Physical Activity and Nutrition Research, Deakin University, 221 Burwood Hwy, Burwood, Vic, Australia 3125, Tel: +613 9244 6474; Fax: + 61 3 9244 6017; E-mail: brad.aisbett@deakin.edu.au

Rec date: Mar 25, 2015 Acc date: Apr 21, 2015 Pub date: Apr 28, 2015

Copyright: © 2015 Phillips M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: To quantify the frequency, intensity, duration, and type of tasks performed by Australian rural fire crews when suppressing wildfires.

Methods: Twenty-eight Australian rural firefighters worked across four, six-hour shifts fighting to curtail the spread of wildfire. Each firefighter wore a heart rate monitor and personal global positioning system (GPS) unit and was followed by a researcher filming their work activity. Video footage of each firefighter was synchronized with their heart rate and GPS data to quantify the frequency, intensity and duration of individual fireground tasks. Fireground tasks were isolated using a previously conducted job task analysis.

Results: Firefighters performed 32 distinct fireground tasks. Task frequencies ranged from once to 103 times per six-hour shift. Individual tasks lasted 4 ± 2 s to 461 ± 387 s, were performed at speeds ranging from 0.12 ± 0.08 m·s⁻¹ to 0.79 ± 0.40 m·s⁻¹ and elicited mean heart rates that ranged between 97 ± 16 beats·min⁻¹ (55.7 ± 8.7 percentage of age-predicted maximum heart rate (HRmax)) and 157 ± 15 beats·min⁻¹ (86.2 ± 10.8 %HRmax).

Conclusion: Fireground tasks were, generally speaking, shorter, slower, and elicited lower heart rates than equivalent tasks previously simulated and reported in the literature. The differences between naturally occurring and simulated tasks question the value of isolated task simulations for conducting physical demands analyses en-route to developing job-specific fitness tests.willfo

anawâvâ

YhU" Q) fYdefhYXh Uhi fVUb ZfYZ[\h]b[Wb VYWUfUMf]gXXhU`ck ZYei YbWncZ]bVJXblg k \]W k YfY fYdefhYX Ug g\cfh Hig g k]h U a cXfUH hc cWWgcbU`m\][\ kcf_cUX" 5g]XbhJZYX fYWbhmVm K nggUbXA UXf &&] hYVbWa Uf_gli XmcZ6cg YhU" &S] Ugc \Uj Y `]a]hU]cbg" :]fgină \YUfh fUH \ \Ug U XYUNX fYWJcb hc UMj]hm Wb[Yğ:U]ła Y U k \]W a UmlfUbgUH]bhc U`ck f h\Ub Y dYMXX \YUfhfUHZf Ub]b]h]U Hg_]b Ug'ei YbWzcf Ub]bZUNX \YUfhfUHZcf g Vgiei YbhItg g&&] 'GXWbXnžZfYZ[\hfg \YUfhfUHZcf g Vgiei YbhItg g&&] 'GXWbXnžZfYZ[\hfg \YUfhfUHZcf g] Vgiei YbhItg g&&] 'GXWbXnžZfYZ[\hfg \YUfhfUHZcf b]b]Zh]g` _Ym hc fZYMi hY Wa V]bU]cb cZ hY dgnWc`c[]W UbX d\nglc`c[]W XYa UbXg cZ h.Y]f `cV &] ']h\]fXnž fY]UbW cb HF57 k]h\ci h g Vgiei Ybhj Y[ZWi]cb cZUMj]]hmYUgjZWi]cbg&&] "bXYXžh Yj U[X]mcZ X]fWikcVgfj U]cbgJ]bW X]b[HF57 \UgVYb ei Yg]cbYXZf XnbLa]W

(61.8 ±12.4) (62.8 ± 12.2)

 $\label{eq:hermitian} \begin{array}{l} \textbf{HVY\%} \ \textbf{HVb} \ a \ \textbf{cghZYei} \ \textbf{YbhRig} \ \textbf{g} \ \textbf{MZcfa} \ \textbf{X} \ \textbf{dYfg} \ \textbf{ZhXi} \ \textbf{f} \ \textbf{b} \ \textbf{k} \ \textbf{JXZfYg} \ \textbf{ddfYgg} \ \textbf{cb} \ \textbf{5} \ \textbf{X} \ \textbf{HU} \ \textbf{HV}a \ \textbf{Ybg} \ \textbf{GXb} \ \textbf{K} \ \textbf{SZ<F.} < \textbf{XfhFUH/}a \ \textbf{b}. \ \textbf{A} \ \textbf{Jbi} \ \textbf{Hg} \ \textbf{Mg} \ \textbf{Mg} \ \textbf{Mg} \ \textbf{K} \ \textbf{Mg} \$

Task	Frequency	Mean HR (beats∙min⁻¹) (%HR max)	Peak HR (beats⋅min⁻¹) (%HR max)	Speed (m·s ⁻¹)	Duration (s)	Type (Hose, Rake, Misc)
Team line building	1	157 ± 15 (86.2 ± 10.8)	168 ± 10 (92.2 ± 7.7)	0.14 ± 0.08	461 ± 387	Rake
Carry coiled 38-mm hose	6	156 ± 29 (83.4 ± 13.7)	161 ± 28 (86.0 ± 13.4)	0.79 ± 0.40	49 ± 60	Hose
Making up 38-mm hose on bite	5	155 ± 24 (82.1 ± 12.9)	164 ± 25 (86.8 ± 13.2)	0.40 ± 0.26	62 ± 47	Hose
Manual 38-mm hose retraction	3	141 ± 29 (78.5 ± 16)	145 ± 29 (80.7 ± 15.6)	0.12 ± 0.08	45 ± 35	Hose
Advance uncharged 38- mm hose	3	133 ± 16 (72.3 ± 6.6)	137 ± 17 (74.5 ± 6.8)	0.46 ± 0.27	21 ± 12	Hose
Blacking out work using 38-mm hose	41	126 ± 24 (71.9 ± 15.3)	131 ± 24 (75.0 ± 15.0)	0.26 ± 0.19	76 ± 70	Hose
Lateral repositioning 38-mm hose	103	127 ± 23 (71.5 ± 12.6)	130 ± 23 (73.2 ± 15.5)	0.40 ± 0.29	17 ± 14	Hose
Operating 38-mm hose	41	124 ± 19 (69.8 ± 10.6)	129 ± 20 (72.4 ± 10.8)	0.34 ± 0.37	40 ± 58	Hose
'Bowling' out 38-mm hose	2	130 ± 36 (69.8 ± 18.8)	130 ± 36 (70.2 ± 18.7)	0.53 ± 0.54	4 ± 2	Hose
Rake hoe during blacking out	24	130 ± 29 (69.4 ± 15.1)	134 ± 31 (71.6 ± 15.9)	0.22 ± 0.11	25 ± 25	Rake

Support crew on fireline	5	101 ± 18 (55.0 ± 9.9)	112 ± 21 (60.8 ± 11.6)	0.78 ± 0.71	79 ± 51	Rake
Targeted walk	95	117 ± 25 (64.8 ± 12.7)	121 ± 25 (66.9 ± 12.8)	0.76 ± 0.51	23 ± 29	Misc
Move uncharged 38-mm hose onto fire break	3	120 ± 15 (65.9 ± 8.7)	126 ± 16 (69.2 ± 8.7)	0.57 ± 0.43	20 ± 15	Hose
Advance 38-mm charged hose	14	115 ± 23 (66.7 ± 13.4)	118 ± 23 (68.3 ± 13.3)	0.54 ± 0.48	17 ± 11	Hose
Full repositioning of 25- mm hose	7	106 ± 19 (59.1 ± 10.3)	115 ± 19 (64.0 ± 9.7)	0.54 ± 0.28	78 ± 42	Hose
'Bowling' out 38-mm hose	2	130 ± 36 (69.8 ± 18.8)	130 ± 36 (70.2 ± 18.7)	0.53 ± 0.54	4 ± 2	Hose
Advance 25-mm charged hose	14	104 ± 19 (59.5 ± 10.2)	109 ± 19 (61.8 ± 9.6)	0.49 ± 0.30	18 ± 10	Hose
Advance uncharged 38- mm hose	3	133 ± 16 (72.3 ± 6.6)	137 ± 17 (74.5 ± 6.8)	0.46 ± 0.27	21 ± 12	Hose

Quickfill pump set up	5	107 ± 13 (58.5 ± 8.0)	115 ± 13 (62.3 ± 8.2)	0.24 ± 0.13	70 ± 73	Misc
Making up 38-mm hose on bite	5	155 ± 24 (82.1 ± 12.9)	164 ± 25 (86.8 ± 13.2)	0.40 ± 0.26	62 ± 47	Hose
Manual 25-mm hose retraction	7	126 ± 27 (68.3 ± 14.5)	133 ± 28 (72.0 ± 15.0)	0.15 ± 0.13	54 ± 67	Hose

cZłtg.gtga cghZłei YbhUtkcggU&(!\ci f g\]ZźWi hXJXbchł/dcfhhY bi a Vŕ cZł dWiJJcbgdYłZcfa YXZcf YUW łtg." CZhY a cghZłei Ybh Utkji Jłłyg (]"Yż Utkjcbg k.]h.]b [`cVU łtg.g`]ghX Vm6cg YhU" Q] di ``]b[UbXXłt[[]b[\cg&gdtfU'YghY'UhfU łkdcgł]cb]b[cZ., !a a UbX & !a a Wtf[YX ZłY \cg&g (HUYY %) [Xbh]ZJXX Ug hY ZłghUbX Zi fh\ a cgh Złei Ybh k]`XZłY g ddfYgglcb łtg.g (HUYY %)" =b hY WffYbhgi XmUgc łkdcfhXh thcdYfUlb[U', !a a Wtf[YX ZłY\cgY (lc XY]j Y k Uhf cf ch\ f g ddfYgdbhžUbX g ddcfł]b[ZłYZ][\hfglrc dłfZcfa h]g łtg. (cf cdYfUłY U & !a a ZłY\cgY kYfY u cb[gh Y a cgh Złei Ybh łtg.g (HUYY %)" H\ YgY ltg.g Wi X WffYglcbX (cf U Ytgh Wbhf]M h) lc hY Y lthJb[i]g\]b[łtg.gh]XbhJZYX Ug a cgh Złei Ybh Vm6cg YhU" Q]" DcgJVY łtg. gla]'U]]łyg Vłk Yb 8i łW i fVb UbX 5i gfU]Ub fi fU ZłYZ][\hfg YbXg k Y][\h lc ci f Ytf]]f WbW glcbgfY[UfX]b[hYcj YfUl]b kcf_dfWgWzłk Yb głi Wi fU ZłYZ][\hfg Ka]"

H\Y dYU_ UbX a YUb \YUfh fUhyg (fYUhj Y hc U Y.dfYX)WWX a U]aia) fYdcfhYX]b h\Y WffYbhgi Xmk YfYž [YbYfU`mgtYU]b[ž `ckYf h\Ub h\cgYfYWefXXX]b gla i `Ufjcbg cZk]`X2ffY@t]ži fVUb ()]ž bUUO]žUbXZcfYgfmQz]ZfYZ[\h]b[hlg_g'H\Y`ckYf\YtfhfUhg cVgYfjYX]bhYWffYbhghiXmWbVYYld'UbYXzUh'YUgh]bdUfhzVmhY g\cfhhf Hg_Xi fUljcbgUbXgckYf Hg_gdYYXgcVgYfj YXzUbX]b gcaY Wgygž `][\huf Yei]da Yoh i gyX]b h\Y WffYbh ghi Xm Wa dUfYX hc dfYj]cig fYgYLfW O!)ž%z&j" 8]ZZfYbWg Wilk Yib cVgyfjYX UbX gla i `UNXkcf_fUNgUfYbch`]a]hXhc ci f kcf_": cf Yl Ua d`Yž6cgYh U"Q]g\ckYXh\hh\YaYb\YUhfUhYdYfifVbZfYZ[\hb[hg_kUg a i W `ck Yf Xi f]b[U &(!\ci f g\]Zh h\Ub \UX VYb fYdcfhX Xi f]b[gla i `Uljcbg cZ i fVLb ZfYZ[\lbb[ltg_g 0]" H\Y \][\Yf \YLfh fUlig cVgYfjYX]bglai`UhcbaUmVYfYUhXhcYhAYfhY`cb[YfhUg_ XifUjcbžk \]W Woi `XVYUZibWijcb cZfYgYUfWYfggYY_]b[hc YgHV]g\ ghundruh wfxlcjuw f fyglobgyg he U dufflw f hg_ O]" 5 'hfbUlji YnždUflyVdUblgžXýd]hY]bgfi Wjcbg hc dYfZcfa glai 'UhX hg_g lgh Ymkci Xcb hY cVža Umkcf_ UhU\][\Yf gfYYXh Ub h Ym Xc |b h\YZYXQ]" H\]gcVgYfjUfcb a UmfYZYM/UZcfa cZ fYUMjj lm k\YfY dUfljVjdUblg]bViXVgY h\Yjf d\ng/W/UMjj]hmk\Yb h\Ym_bck h\YmUfYVY]b[a cb]hcfYX cf Wb j]Yk h\Yf dYXca Yhf O&]" =h]gUgc dcggJVY h\Uh Ya Yf[YbWngYf] JW k cf_Yfg `ck Yf h\Yff H.g_ gdYXX UbX h Y Y Z c f Y V t h f U Y h c d W h Y f Y Z c f h g U k c Y g Z h H g\mdch\Yglgžh\ci [\fUlgYXdfYj]ci gmVm6i XXUbXW^~YU[i YgO]]gmYh hc VYX ff YM imhigh Xžh ci [\ fYM bhcVgYfjUjcbg cZCdUb]g k] XUbX ZfYZ[\htgO'] Xcg\ckU`ckYf]b[cZaYb\YUhfUhYk]h\`cb[Yf g)]Zbg": ihifYglai UljcbgcZYaYf[YbWngYfj]WgHg_gUbXkcf_aUnž UWWFXJb[`nžfYei]fYai`Hd`YHg_fYdYHJbcbghcUXYeiUHYmfYdfYgYbh hYkcf_XYaUbXgZUVX cbhY′cV"

HY Hg_Xi fUjcbg cVgfjYX]b hY WiffYbh gi Xm UY Ugc WobgXxfUVmg\cfhhf h\b h\cgY dfcdcgXX VmYl dYf]YbWX 5i gfU]b fi fU ZfYZ[\hhfg Xi f]b[U g VYWj Y cV Hg_bUngg cb k]XZfY gi ddfYgglcb Qi"H\YWa dUf]gcbžbchk]hgibX]b[ga U`X]ZfYbWg]b Hg_g Vffk Yfb i fS `ULg A A Wa YdfXi fULLg b cVgłj YZ4Y [fci bXHg gk YY2[YbYU`mglYU]b[žgck YždYZfa YX Uh`ck Y glYXgz bXY]WX `ck Y \YthfUYYgcbgyhUb ga i UhX Hg g]b k] X4Y 2gfi Wi fUžbU Užcf ZfYdfmWbhl hg H\YHg gk YY Ugc g\cfhYf h\b dfYj [ci g g VYW] Y `cV Hg_ bUngg ZbXlb[gž g ddcfl]b[UfYVbhfYj]Yk (%]]b h]gUYU H\YWffYbhfYg hg²UVI hXtk]b[i dcb Ua cXyfg da GYz]bX]WY h\Dgb[Y fYdY]hcb Hg_ ga i `Ujcbga UhbchUWfUYmWdh fYkcf_ Xá UbXg' H\YgYfYg hg² jZ fd']WhX UWcg ch`Yf f]g?]Wjcbg Wi X g[b]ZWbhmUhf hY dfcWggi gXhc Xyg[b `cV.gIYWZVZhbYghYgh]b[UbXhfUb]b[fY]a Yg² : fca hY ' & Hg_g cVgff YZ cb`mZj Y Hg_g k YY Zi bX hc VY ga i `HbYci gmZYei YbHz` cb[UbX]bhbgY (cf fU_XX]b hY hcd %S Hg g Zf Hkc cZh YgY hfYY]bX]Wg'' H\Ynk YfYhda `]bY Vi]X]b[ž `UhfU fYdcgh]cb]b[cZU', !aa ZfY\cgYzIbXi][\hmW]`]b[U ', !aa ZfY\cgY'H\YgYHg gUY`]_Ymc Zfa hYVdgZf UmZhi fY

....