Lack of Association between *FTO* Gene Variations and Metabolic Healthy Obese (MHO) Phenotype: Tehran Cardio-Metabolic Genetic Study (TCGS)

1

movement of cholesteryl ester from high-density lipoproteins/HDL to triglyceride-rich very low-density lipoproteins/VLDL, and the equimolar transport of triglyceride from VLDL to HDL [12,13].

Given the scarcity of data in genetic studies on XJ YfVbh obesity phenotypes, we aimed to examine the interaction of 9 remarkable single nucleotide polymorphisms (SNP) in FTO and CETP with lipid dfc Yg among these mentioned phenotypes in the Tehran Cardiometabolic Genetics Study (TCGS).

Materials and Methods

Population

Subjects were selected from the ongoing Tehran Cardio-metabolic Genetics Study (TCGS) which is an ongoing genetic study involving a cohort designed to determine the risk factors for major noncommunicable disorders in the Tehran population referred to as the Tehran lipid and glucose study [14,15]. Written consent was obtained from each subject and the research council of the Research Institute of Endocrine Sciences of the Shahid Beheshti University of Medical sciences approved the study.

Demographic information and biochemical analysis

Information for age, sex and history of using medication for diabetes, hypertension and lipid disorders were collected with a standardized questionnaire. Weight and height were recorded using standard protocols [16]. Body mass index (BMI) was calculated as weight in kilograms divided by height in square meters. Systolic blood pressure (SBP), Diastolic blood pressure (DBP) and anthropometric variables such as Waist circumference (WC) and Hip circumference (HC) were measured as described previously [17]. Fasting plasma glucose (FPG), Triglycerides (TG), Total cholesterol (TC) and Highdensity lipoprotein cholesterol (HDL-C) levels were measured by Pars AzmunCo (Iran); in addition, 7cY Wiblg of variation (CV) for total cholesterol, HDL-C and triglyceride measurements were below 5% [18]. Non-HDL-C was calculated by subtracting HDL-C from TC [19]. LDL-C concentrations were calculated using a cX] XX Friedewald's equation [20].

Genetic analysis

Genomic DNA from 954 subjects was extracted from peripheral blood using the standard Proteinase K, salting-out method [21]. Nine selected polymorphisms (FTO polymorphisms located in intron: rs6499640, rs1421085, rs1558902, rs1121980, rs8050136, rs7202116; CETP polymorptahisms located in upstream and intron: rs3764261, rs1800775, rs1864163) were studied with the T-ARMS assay. In each d in °

rs17817449	T>G	OF	ACGGTGAAGAGGAGGAGATTGTGTAACT	66.5	28			
		OR	TGTAGTAGTAGTGACAGAAGTGGAGAAA	58.7	28	TT-500 400	TC-569 490 409	00,569,499
		IF	GTTTCAGCTTGGCACACAGAATCG		24	TT:568,128	TG:568,489,128	GG:568,489
		IR	AGGAGCGGGACTGTTAAATTAAAGCA 66.5 26					
rs8050136	C>A	OF	CCAACCAAGGTCATTATAGGAAGAGCT	62.5	27	- CC:530,342	CA:530,342,237	AA:530,237
		OR	TACATCCTGAGCTCTGCCACTATACCA	64.6	27			
		IF	ATGCAAGTTGACCACTGTGGCTATC	63.6	25	- 00:530,342		
		IR	GCAAAAACCACAGGCTCAGATACTT 62 25		-			
rs9939609	T>A	OF	GGTGGTACGCTGCTATGGTTCTACA	64.4	25			
		OR	TCAGCCTCTCTACCATCTTATGTCCAA GGTTCCTTGCGACTGCTGTGAATATA		27	- TT:455,306	TA: 455,306,200	AA: 455,200
		IF			26			
		IR	AACAGAGACTATCCAAGTGCATCGCA	64.4	26	-		
rs9939973	G>A	OF	CTCAAGTGATTTACCCATTTCAGTGCTCCAA	65.5	31	GG:479,227	GA:479.227,301	AA:470.201
		OR	CTGGCTCATGGTGTGTGTGTCATCTCCTG	67	27			
		IF	AGCACCCAAGGGACCATCAAACAGA		25	GG:479,227	GA:479,227,301	AA:479,301
		IR	CTTCGCATTCCCTCTCCACAACTGC	66	25			
rs6499640	G>A	OF	ATCTGCTCTTAATGTGGAAACTGTGG	61.5	26		0.4 577 000	
		OR	ATATTCAAACCCTCAACTCTACCAGCT	62	27	00.577.000		
		IF	TGTGTAAGGAACAGGGTTTATCTAAAG	59.1	27	GG:577,206 GA:577,206		AA:577,424
		IR	CTGATGGTAGAGTATTTCAAAGATGCT	59.3	27			

OF: Outer Forward Primer; OR: Outer Reverse Primer; IF: Inner Forward Primer; IR: Inner Reverse Primer.

		HDL-C (mg/dl)	LDL-C (mg/dl)	non-HDL-C (mg/dl)	Cholesterol (mg/dl)	Triglyceride (mg/dl)	Hip circumference	Waist circumference
Statistic								
		SE, (95% CI)	SE, (95% CI)	SE, (95% CI)	SE, (95% CI)	SE, (95% CI)	SE, (95% CI)	SE, (95% CI)
	Total population	0.09,-0.05(-0.22;0 .12)	0.09,-0.11(-0.28; 0.07)	0.09,-0.08(-0.25; 0.09)	0.09,-0.1(-0.28;0. 07)	0.08,0.08(-0.08;0. 25)	0.08,0.05(-0.11;0. 21)	0.08,0.09(-0.07;0. 24)
rs64996 40	Overweight	0.13,0.01(-0.25;0. 26)	0.13,-0.13(-0.39; 0.14)	0.13,-0.08(-0.33; 0.17)	0.13,-0.08(-0.34; 0.19)	0.12,0.13(-0.12;0. 37)	0.09,0.04(-0.14;0. 21)	0.08,0.06(-0.1;0.2 2)
	Obese	0.16,0.1(-0.22;0.4 1)	0.18,-0.24(-0.59; 0.11)	0.16,-0.22(-0.53; 0.1 0.14)				

	Overweight	0.11,0.34(0.12;0.5 6) [*]	0.11,0.25(0.03;0. 47)	0.11,0.15(-0.07;0 .36)	0.11,0.23(0;0.45) *	0.11,-0.09(-0.3;0.1 2)	0.08,0.01(-0.14;0. 16)	0.07,-0.03(-0.17;0. 1)
	Obese	0.13,0.51(0.25;0.7 7) [*]	0.15,0.15(-0.15;0 .44)	0.14,0.05(-0.22;0 .32)	0.15,0.19(-0.1;0. 48)	0.13,-0.1(-0.35;0. 15)	0.1,-0.02(-0.21;0. 18)	0.11,0(-0.21;0.2)
	General population	0.07,0.3(0.16;0.43) [*]	0.07,0.04(-0.11;0 .18)	0.07,-0.03(-0.17; 0.1)	0.07,0.05(-0.09;0 .19)	0.07,-0.15(-0.28;- 0.02)*	0.07,-0.16(-0.29;- 0.03)*	0.06,-0.08(-0.21;0. 04)
rs18641 63	Overweight	0.1,0.11(-0.09;0.3 1)	0.11,0.01(-0.2;0. 22)	0.1,-0.05(-0.25;0 .15)	0.11,-0.03(-0.23; 0.18)	0.1,-0.11(-0.3;0.08)	0.07,-0.16(-0.3;-0. 02) [*]	0.06,-0.08(-0.21;0. 04)
	Obese	0.12,0.5(0.26;0.74) [*]	0.14,0.18(-0.1;0. 46)	0.13,0.08(-0.18;0 .33)	0.14,0.21(-0.06;0 .49)	0.12,-0.19(-0.42;0 .05)	0.1,0.01(-0.18;0.1 9)	0.1,-0.03(-0.23;0.1 6)

*p<0.01

12. Kuivenhoven