

# Photovoltaic that is Ultra-thin and Light for use in Buildings

#### Illias Hischier\*

Department of Civil Engneering, Institute for Energy Technology, IET, Switzerland

### Introduction

e Integrating solar thermal collectors and photovoltaic modules into the building envelope is critical for achieving the current objective of producing net-zero and plus-energy structures. Photovoltaic/ thermal hybrid (PVT) collectors have been proposed to maximise energy harvest [1].

e solar cells act as an absorber in a PVT collector, capturing the incident solar light. A portion of the radiation is converted to electricity (usually 10-20%), while the rest is turned to useable heat in a neighboring thermal collector. As a result, a PVT collector can not only produce heat for building systems, but also improve the power generation of solar cells by reducing their temperature. A variety of PVT collector concepts have been presented in the past based on use (e.g. air/water pre-heating, hot water for domestic/industrial use, etc.) and location-dependent circumstances (e.g. climate and orientation).

#### Description

Design (e.g. glazing, concentration, degree of integration) and kind of heat removal (natural/forced uid/gas ow) were used to categorize the various proposals, PVT class de nitions include liquid/air PVT, covered/uncovered PVT, and concentrating PVT, depending on the type of solar cell (e.g. monocrystalline/polycrystalline silicon, thinlm solar cells, etc.) and the type of solar cell (e.g. monocrystalline/ polycrystalline silicon, thinlm solar cells, etc.). e level of thermal insulation has been o ered as an alternative classi cation in recent years [2].

Improved insulation (for example, side and rear insulation, as well as an additional transparent cover) is associated with higher stagnation temperatures, which raises issues relating to material temperature resistance, long-term degradation, thermal expansion, and overheating prevention [3].

e majority of PVT collectors are based on a standard glazed at

\*Corresponding author: Illias Hischier, Department of Civil Engneering, Institute for Energy Technology, IET, Switzerland, Tel: +41 44 633 75 15; E-mail: illias. hiscairr@arch.ethz.ch

Received: 01-Feb-2022, Manuscript No. jaet-22-55609, Editor assigned: 04-Feb-2022, PreQC No. jaet-22-55609(PQ), Reviewed: 18-Feb-2022, QC No. jaet-22-55609, Revised: 24-Feb-2022, Manuscript No: jaet-22-556089(R), Published: 28-Feb-2022, DOI: 10.4172/2168-9717.1000264

**Citation:** Hischier I (2022) Photovoltaic that is Ultra-thin and Light for use in Buildings. J Archit Eng Tech 11: 264.

**Copyright:** © 2022 Hischier I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

## **Conflict of Interest**

None

## References

- 1. Joshi N, Kolte MT (2013) Digital Hearing Aid-A Review. Int j adv res electr 1:369-372.
- 2. Turner CW, Humes LE, Bentler RA, Cox RM (1996) A review of past research

Page 2 of 2