Citation: Vijayakumar M, SasidharanPillai S, Balakrishnan A (2021) Prevalence of Microalbuminuria and its Association with Cardiometabolic Risk Factors in Children with Obesity and Overweight Attending Obesity Clinic, Kerala, India. J Obes Weight Loss Ther 11: 466.

Page 2 of 7

light clothes. $\,$ e height was measured to the nearest 0.1 cm. Waist

Table 1: Clinical and laboratory parameters of study subjects.

Clinical and laboratory parameters	Study subjects(n=207)	Percentage (%)
Obese	168	(81.16%)
Overweight	HJ	(18.84%)
Systolic Blood Pressure above 90th centile	FH	(6.28%)
Diastolic Blood Pressure above 90th centile	11	ÇÍÈHFÃD
High cholesterol	58	(28.02%)
High Triglycerides	ÌH	(40.10%)
High Low density lipoprotein	58	(28.02%)
Low High density lipoprotein	62	(29.95%)
Dyslipidemia	149	(71.98%)
Impaired fasting glucose	22	ÇF€ÈÎHÃD
Abnormal HbA1c	66	ÇHFÈÌÌÃD
Abnormal HOMA-IR	111	ÇÍHÈÎGÃD
Hyperinsulinemia	42	(20.29%)
Metabolic syndrome	51	(24.64%)
Positive C reactive protein	нї	(17.87%)
Fatty liver	FFH	(54.59%)
&æ¦ [ciåki} ci { æk { ^åiækc@i&\ }^••kÜi*@cNJ Í th centile	77	ÇHÏÈFJÃD
&æ¦ [ciåki} ci { æk { ^åiækc@i&\}^••kŠ^-cNJ ĺ th centile	ΪΗ	ÇHÍÈGÏÃD
&æ¦[αåÅå}α {æÅ { ^ååæÅc@å& \ }^••Åà [c@NJ ĺth centile	62	(29.95%)
T^æ}Á&æ¦[dåÁá}di{æÁ{^ååæko@å&\}^••ÁNJÍth centile	69	ÇHHÈHH Ã D
Microalbuminuria	42	(20.29%)
Abbrevations: HOMA-IR- homeostatic mod	lel assessment-insulin resistance, HbA1c- Hemo	oglobin A1c

Table 2:ÁÖ^ { [*¦æ]@i&ðæ}c@¦[][{ ^c¦i&Á~æ&c[¦

|[][{^c|&Dæ}c@|[][{^,

	Normal UACR (n=165)	Microalbuminuria (n=42)	p value
Demographic/anthropometric factors	Horman Onor (II=100)	miorodibamilana (11–42)	p value
Age (years) Mean (95% CI)	JÈJGÁCJÈÍÁ.ÁF€ÈHHD	9.68 (8.67 – 10.68)	0.62
Sex % Female (n)	HÎÈJÏÁCÎFD	45.24 (19)	€ÈHG Î
ÓΤ0ÁÇ*Ð { GDÁΤ^æ}ÁÇJ Í ÃÁÔQD	G I ÈGÁCGHÈ TÁ . ÁG I È TD	G IÈFÁCGHÈ€FÁ . ÁG ÍÈGD	€ÌHÍ
Waist Hip Ratio Mean (95% CI)	1.01 (1.002 – 1.02)	1.01 (0.998 – 1.02)	0.68
Waist Height R Mean (95% CI)	€ÈÎGÁC€ÈÎFÁ.Á€ÈÎGHD	0.62 (0.59 – 0.64)	0.964
Pre puberty	96(58.18%)	GGCÍ GÈH Ì ÃD	0.498
puberty	î (ÇHJËHJÃD	FÎCHÌÈF€ÃD	0.878
Post puberty	4(2.42%)	4(9.52%)	0.056
Family History of obesity	112(67.88%)	27(64.29%)	0.658
Family History of Hypertension	106(64.24%)	25(59.52%)	0.571
Family History of dyslipidemia	ììÇÍHÈHHÃD	GHÇÍ IÈÏ Î ÃD	0.868
Family History of Diabetes mellitus	112(67.88%)	HHÇÏ ÌÈÍ Ï ÃD	0.177
Family History of heart attacks	68(41.21%)	FIÇHHÈHHÃD	€ÈHÍF
Cardiometabolic parameters	,	,	
High Systolic blood pressure	10(6.06%)	HÇÏĖFI ÃD	0.796
High Diastolic blood pressure	9(5.45%)	2(4.76%)	0.858
High cholesterol	45(27.27%)	FHÇH€ÈJÍÃD	€ÈÎHÍ
Elevated Triglycerides	66(40%)	17(40.48%)	0.955
Elevated Low density lipoprotein	45(27.27%)	FHÇH€ÈJ Í ÃD	€ÈÎHÍ
Low High density lipoprotein	47(28.48%)	FÍÇHÍÈÏFÃD	€ÈHÎF
Dyslipidemia	109(66.06%)	H€ÇÏFÈIHÃD	0.508
Impaired Fasting Glucose	15(9.09%)	7(16.67%)	0.166
High HbA1c	Í IÁÇHGÈÏÃD	FHÁÇHF Ã D	0.826
Insulin resistance	87(52.72%)	24(57.14%)	0.608
Hyperinsulinemia	H€ÇFÌĖFÌÃD	12(28.57%)	€ÈFHÍ
Metabolic syndrome	ΗΪÇGGÈIGÃD	F I ÇHHÈHH Ã D	0.169
Positive C reactive protein	HFÇF Ì È Ï J Ã D	6(14.29%)	0.497
Fatty liver	ÌJÇÍHĖJIÃD	24(57.14%) 0.7	
High cIMT Right	Í Í ÇHHÈHH Ã D	GGÇÍ GÈH Ì ÃD	0.022*
High cIMT Left	ÍIÇHGÈÏHÃD	19(45.24%)	0.129
Mean cIMT	Í€ÁÇH€ÈHÃD	19 (45.2%)	0.067

Abbrevations: cIMT- carotid intima media thickness, HbA1c- Hemoglobin A1c

Page 4 of 7

anthropometric parameters such as age, sex, BMI, WHR, WHtR (see Table 2).

Proportion of children with dyslipidemia, IFG insulin resistance and hyperinsulinemia, abnormal le cIMT and mean cIMT were more in MA group compared to normal UACR group (not statistically signi cant) (Table 2). Proportion of children with abnormal right

cIMT values, were signi cantly higher in the MA group.

Study patients with MA and no MA were also compared for mean values of cardiometabolic parameters. Mean values of BP, triglycerides and HDL showed no difference betlBh72. Mean value

Þ[Áā} • ˇ ā}Á!^•ā•cæ}&^	Ç}MFÍDÁÍGÈFHÁÉÐĒÁGIÈIÌJ	0.195	Ç}MHDÁHÌÈÎÏÁÉÐĒÁÏÈÍ€Î	0.566		
Insulin resistance	Ç}MFÏDÁIHĖÎÍÁÉÐĒÁFIÈÌÎÎ	0.195	(n=7) 51.29 +/- 23.400	0.566		
C Reactive Protein within normal range	Ç}MGÌDÁIJÈFIÁÉÐĒÁG€ÈJJÏ	0.265	Ç}MÌDÁIHÈÍ€ÁÉÐĒÁFFÈÌHG	0.895		
High C Reactive Protein	Ç}MIDÁHÏÁÉÐĒÁÍÈHÍI	0.265	(n=2) 63.50 +/- 45.962			
Þ[¦{æ Á&æ¦[ciåÁi}ci{æÁ{^åiæÁc@i&\}^••	Ç}MFIDÁIÌÈFIÁÉÐĒÁGHÈÎÏ€	0.954	Ç}MÎDÁIÌÈ€€ÁÉÐĒÁGIÈ€€€	0.991		
High carotid intima media thickness Right	Ç}MFÌDÁIÏÈGGÁÉÐĒÁFÏÈÍFÍ	0.954	Ç}MIDÁIÎÈÏÍÁÉÐĒÁFÎÈÌG€			
Þ[¦{æ Á&æ¦[ciåÁi}ci{æÁ{^åiæÁc@i&\}^••ÁŠ^-c	Ç}MFÌDÁIÌÈ€ÎÁÉÐĒÁGFÈÍÏÏ	0.761	Ç}MÍDÁÍFÈI€ÁÉÐĒÁGÍÈFÎÍ	€ÈGHÍ		
High carotid intima media thickness Left	Ç}MFIDÁIÏÈ€ÏÁÉÐĒÁFÌÈÏÏÎ	0.761	Ç}MÍDÁIHÈ΀ÁÉÐËÁFÎÈFÌ€			
Þ[Á-æcc^Á āç^¦	Ç}MFHDÁIÌÈÏÏÁÉÐĒÁGÍÈJIÎ	0.282	Ç}MÍDÁIÍÈG€ÁÉÐĒÁFFÈÍÌI	€ĖÏÎH		
Fatty Liver	Ç}MFJDÁIÎÈÌIÁÉÐĒÁFÍÈÎHG	0.262	Ç}MÍDÁIJÈÌ€ÁÉÐĒÁGÌÈ€H€			
Þ[ÁT^cæà[å&Á•^}å¦[{ ^	Ç}MG€DÁ I JÈ Í €ÁÉÐĒÁG€ÈJF Í	€ÈHJÍ	Ç}MÌDÁIJÈÏÍÁÉÐĒÁGGÈ€JÎ	0.511		
Metabolic syndrome	Ç}MFGDÁIIÈÍ€ÁÉÐĒÁFJÈ€ÌÎ	€t⊓J I	Ç}MGDÁHÌÈÍ€ÁÉÐĒÁF€È΀Ï	0.511		
EÙœċi•ċi&æ ^Å•ā*}ā,&æ}olæċhÍÃÅ ^ç^						

levels and CRP were clearly not associated with the presence of MA. (Table 3).

Relationship between Mean UACR and various cardiometabolic risk factors were analyzed in children with overweight and obese group (Table 4) and no signi cant associations were observed.

Discussion

About 1/5th of the study population comprising of 207 children with ow- ob had microalbuminuria. Prevalence of MA was more in girls compared to boys though not statistically signi cant. Mean UACR was highest for overweight girls. Mean UACR was signi cantly higher in post pubertal girls in comparison to prepubertal and pubertal girls. No signi cant di erences were found in terms of demographic, anthropometric parameters and cardiometabolic risk factors between those with MA and those with normal UACR. Proportion of children with abnormal right cIMT values, were signi cantly higher in the MA group. Mean UACR was high in children with obesity having elevated systolic BP and in children with overweight having hypertriglyceridemia, dyslipidemia, prediabetes, hyperinsulinemia, insulin resistance or high CRP, compared to children with ow-ob having no cardiometabolic risk factors, though not signi cant.

One study from Bangladesh observed microalbuminuria in 14.3% of children with overweight and signicant association of hypertension with high urinary microalbumin in these children [18]. Prevalence of

Myren [18]. iin thesey highis 1s3yigni cantly Myrgher033ccwerote

Citation: Vijayakumar M, SasidharanPillai S, Balakrishnan A (2021) Prevalence of Microalbuminuria and its Association with Cardiometabolic Risk Factors in Children with Obesity and Overweight Attending Obesity Clinic, Kerala, India. J Obes Weight Loss Ther 11: 466.

Page 6 of 7

endothelial dysfunction leading to widespread organ damage in obesity. Endothelial dysfunction of renal microvasculature leads to hyper ltration and proteinuria. Endothelial dysfunction is seen in early

- HFÉRæå!^•i&ÅŠÉÅÜi|ç^!; [[āÅÜRÊÁSi}!æÅÜÊÞèc•&@ÁÖÅÇG€FJDÅÔæ}Å&@ijā@[[āÁ[à^•òc^Ái}'`^}&^Ájæc^!Á&@![]}&Á\iå}^^Áåi•^æ•^ÑÁÚ^āiæc!ÁÞ^]@![|ÉHIKGIÍÏÈÄÏÏÈ
- HGĖHeathcote KL, Wilson MP, Quest DW, Wilson TW (2009) Prevalence and duration of exercise induced albuminuria in healthy people. Clin Invest Med HGฝiÒgîftògîftè
- HHÈMØ[|i Å ÞËMØ[|i Å TËÅ Tæ¦\[çi Å ÙËMŒ} ^|\[çi Å TËÅRæ}\[çi Å Ù, et al. (2015) Risk factors for the development of metabolic syndrome in obese children and ,in-toese -creatininercise otima-n Invest Med I D D€L U K V F H RP@ G D0`U L G @N qh' 0 €