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kinds of mental ingredients (Gold, Silver and Copper etc.). The clinical 
effects of RNSP were focused on the components from plants including 
crocin from saffron and glycyrrhetinic acid from glycyrrhiza uralensis 
[15,16]. The possible mechanisms of RNSP are considered by the 
antioxidant effects of crocin (Figure 1A) [17,18] and anti-inflammatory 
effects of glycyrrhetinic acid (Figure 1B) [19,20]. In previous studies, 
we have shown that RNSP improves the learning and memory and 
reduces β-amyloid (Aβ) protein levels in mouse AD models [21,22]. 
Furthermore, RNSP was also found to improve the cognitive function 
and decrease the serum levels of Aβ42 and pro-inflammatory mediators 
in mild-to-moderate AD patients, who living at high altitude. These 
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findings suggest the utility of RNSP in clinical applications for AD [23]. 
However, the molecular mechanisms of the effects need to be clarified.

Our current findings concerning the neuroprotective effects of 
RNSP encouraged us to investigate further targets of RNSP [24]. In this 
study, we examined the effects of RNSP on microglia and its molecular 
mechanisms using MG6 microglia under Hypoxia/Reoxygenation 
(H/R) conditions.

Materials and Methods
Reagents

RNSP (Zhunzi Z63020062) was purchased from Qinghai Jinke 
Tibetan Medicine Pharmaceutical Co., Ltd. (Xining, China). In order 
to eliminate the interference caused by the methanol solvent, a suitable 
methanol concentration for cell culture was titrated. Antibodies against 
mouse anti-phospho-IκBα, rabbit anti-IκBα, mouse antiphospho-p65, 
P65 antibody and 8-oxo-dG antibody were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA).

Microglia cell culture

The MG6 cell line (Riken Cell Bank, Tsukuba, Japan) was cultured 
in DMEM supplemented with 1% penicillin-streptomycin (Invitrogen, 
Grand Island, NY, USA), 100 μmol/L β-mercaptoethanol, 4500 mg/L 
glucose (Invitrogen),10 μg/mL of insulin, and 10% FBS according to 
previously described methods.

Assays for cell viability
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H 6 h/R 1 h stimulation in presence or absence of RNSP pre-
treatment. They were then incubated with mouse anti-p65 (1:500) 
or mouse anti-8-oxo-dG (1:500) overnight at 4°C. The sections 
were incubated with donkey anti-mouse Alexus 488 (1:500; Jackson 
ImmunoResearch, West Grove, PA, USA) after washing by PBS 
followed by Hoechst (1:200) and mounted in Vectashield anti-fading 
medium (Vector Laboratories, Burlingame, CA, USA). Images were 
obtained using a confocal laser-scanning microscope (CLSM; 2si 
Confocal Laser Microscope, Nikon, Tokyo, Japan). The line plot 
profile and fluorescence intensity were analyzed using the Image J 
software program.

Statistical analyses

The independent experiments and statistical analysis used (One-
way ANOVA with a post hoc Tukey’s test and a two-tailed unpaired 
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The effects of RNSP on the H/R-induced oxidative stress in 
microglia

Our previous study showed that hypoxia-induced mitochondrial 
oxidant generation was involved in oxidative stress in microglia [14]. 
These observations prompted us to examine the effects of RNSP on 
H/R-induced oxidative stress in microglia using two approaches: 
MitoSOX Red probe was used to examine mitochondria-derived 
ROS generation [25] and immunofluorescence imaging for 8-oxo-dG 
was to examine the DNA oxidation [26]. Compared to the untreated 
MG6 microglia, the immunofluorescence intensity of MitoSOX Red 
was significantly increased in MG6 microglia at H/R10 min (Figures 
5A and 5B), suggesting the ROS under H/R conditions were derived 
from mitochondria. Pretreatment with RNSP (10 ug/mL) significantly 
inhibited the mean fluorescent intensity of MitoSOX Red in microglia at 
H/R 10 min (Figures 5A and 5B), thus suggesting the early antioxidant 
effects of RNSP on microglia. Immunofluorescence imaging showed 
8-oxo- dG was significantly increased comparing to the cells without 
exposure to H/R 1 h (***p<0.001). The H/R-induced NO production 
in microglia was further examined. Compared to the untreated MG6 

cells, the mean levels of NO2-/NO3- were significantly increased from 
H/R 5 min to H/R 24 h in the in the culture medium of MG6 cells, 
and pretreatment with RNSP (10 µg/mL) markly inhibited the mean 
levels of NO2-/NO3- at H/R 24 h in MG6 cells (Figures 5C-5E). These 
findings confirm that RNSP inhibits the H/R- induced oxidative stress 
in microglia.

The effects of RNSP on the H/R-induced NF-κB activation in 
microglia

Finally, the effects of RNSP on the activation of NF-κB during H/R 
exposure were examined, as NF-κB regulates most of inflammatory 
molecules. Compared with the untreated cells, the phosphorylation of 
IκBα in MG6 microglia was significantly increased from H/R 15 min 
to H/R 30 min and gradually recovered to the base levels at H/R 2 h 
(Figure 6A). Pretreatment with RNSP (10 µg/mL) significantly inhibited 
the H/R- induced phosphorylation of IκBα in microglia (Figure 6B 
and 6C). Furthermore, p65 nuclear translocation was induced in MG6 
microglia at H/R 60 min, and pretreatment with RNSP (10 µg/mL) 
significantly inhibited the H/R-induced p65 nuclear translocation in 
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microglia (Figure 6D). These findings confirm that RNSP suppresses 
the H/R-induced NF-κB activation in microglia.

Discussion
The present study indicates that RNSP protects against H/R-

induced cytotoxicity and regulates the H/R-induced inflammatory 
responses in MG6 microglia by reducing the oxidative stress and 
NF-κB activation (summarized in Figure 6). This is first to describe 
the principle molecular mechanisms underlying the clinical benefits 
of RNSP in AD patients. Oxidative stress was proved to damage the 
cellular components, including DNA, resulting in subsequent cell 
death [27]. Present observations found the intensity of MitoSOX 
Red, a marker for mitochondria-derived ROS generation, increased 
as quickly as at H/R 10 min, which involved 10 min of reoxygenation 
after hypoxia, and the fluorescent intensity of 8-oxo-dG, a biomarker 
for oxidative stress-damaged DNA [26] was significantly increased 
from H/R 1 h, which involved 1 h of reoxygenation after hypoxia in 
the MG6 microglia. These findings indicated that mitochondria are the 
origin of ROS generation, thus inducing oxidative stress in microglia. 
In addition, the increased levels of NO2-/NO3-, which are metabolic 
agents for NO production, persisted through H/R 24 h, indicating the 
continuative ROS overproduction due to oxidative stress in microglia 
under H/R conditions. Of note, pretreatment with RNSP significantly 
inhibited the H/R-induced mitochondrial ROS generation, 8-oxo-dG 
expression and NO production (Figure 5), resulting in the protection 
against subsequent cell death in microglia (Figure 2). This indicated 
that RNSP was able to reduce oxidative stress in microglia (Figure 7).

Therefore, the clinical effects of RNSP on improving the cognitive 
functions in mild-to- moderate AD patients living at high altitude may 
due to a reduction in oxidative stress [23]. NF-κB activation is rapidly 
and transiently induced by oxidative stress [28]. In the present study, 

phosphorylation of IκBα in MG6 was detected after H/R 15 min, and 
p65 nuclear translocation was induced at H/R 60 min, which suggests 
that NF-κB activation is associated with an increased intracellular 
redox state during H/R 60 min [29]. NF-κB activation polarizes 
microglia into the neurotoxic phenotype, as NF-κB is a transcription 
factor that encodes the genes of the pro-inflammatory (neurotoxic) 
mediators, such as IL-1β, TNF-α and iNOS [30]. In the present study, 
the increased expression of neurotoxic mediators (IL-1β, TNF-α and 
iNOS) paralleled the decreased expression of neuroprotective (anti-
inflammatory) mediators (arginase-1 and IL-10) at H/R 24 h in MG6 
microglia, indicating that microglia are shifted to the neurotoxic 
phenotype at the later phases under H/R conditions. Indeed, the 
lasting expression of neurotoxic mediators establishes a feedforward 
loop for NF-κB activation, as pro- inflammatory mediators such 
as IL-1β promote NF-κB activation [31]. Pretreatment with RNSP 
significantly decreases the H/R-induced NF-κB activation and the 
expression of pro-inflammatory mediators but reverses the H/R-
decreased expression of the anti- inflammatory mediator TGFβ1 
in microglia (Figures 3-6), suggesting that RNSP may be able to 
ameliorate the microglia-mediated neuroinflammation and shift 
activated microglia to neuroprotective phenotypes. The effects of 
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requires oxygen, which is largely dependent on the cerebral blood flow 
[36,37], and the cerebral blood flow is slowed with aging and further 
decreased in AD patients [38,39]. This low cerebral oxygen availability 
results in more cognitive defects [40]. Therefore, chronic hypoxia may 
contribute to the cognitive decline in aging individuals as well as AD 
patients [40,41]. The microglial proliferation and activation associated 
with neuronal loss could be histologically observed in human AD brain 
[9,32]. It is well known that hypoxia activated microglia induce neuronal 
death by producing IL-1β, TNF- α as well as and IL-6 [2,6,9]. And 
hypoxia shifts microglia into neurotoxic phenotype in ROS-dependent 
[14]. In the present cultured cell study, we give the first evidence that 
RNSP inhibiting the H/R induced productions of ROS and neurotoxic 
mediators in microglia, thus demonstrate the anti-inflammation and 
antioxidant effects of RNSP on microglia. Taking together with the 
effects on mitigating microglia-related neuroinflammation and the 
directly neuroprotective effects on neurons [24], RNSP could be used 
to prevent or treat for delaying pathophysiology of AD and other 
neurodegenerative diseases. These findings along with the observation 
of the direct roles of RNSP in neuroprotection and microglia regulation 
prove the clinical benefits of RNSP in the prevention and management 
of AD [23].

Conclusion
The present study provides the first evidence of the potential 

protective effects of RNSP on the hypoxia-related neuroinflammatory 
responses in microglia. The effects were dependent on reducing the 
oxidative stress and NF-κB activation, highlighting a new molecular 
target for RNSP in the clinical intervention of AD.
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