

Open Access

Ke ords: N , , - , ; ; FTIR; DSC; MA-, -PE

Introd ction

 $I_{1} = \dots (/ (1, 1 / 1, 1 /$

 $\begin{array}{c} & \underset{i=1}{\overset{i=1}{\longrightarrow}} & \underset{i=1}{\overset{i$

Page 2 of 6

Weight loss

 $\begin{array}{c} H_{1} & H_{2} & H_{2} & H_{1} & H_{2} &$

FTIR

 $\begin{array}{c} I = F_{1,2}(I = 4 + 1, I = 1,$

Page 4 of 6

Ind Chem, an open access journal ISSN: 2469-9764

 $\begin{array}{c} (1 \times \mathbb{R} \otimes \{1, 1\}, (1, 1), (1$

Ph sical changes

 $\begin{array}{c} P_{i} = \left\{ \begin{array}{c} (1,1) \\$

Concl sion

. . In .-

- PE 1 LLDPE/LDPE/PLA/MA- -PE / 50.2% 90.2% // 144. I. U 🔊 🖄
- 2. Dr. r , ..., . LLDPE/LDPE/PLA/MA, PE r , ...

Peak Position (cm ⁻¹)	Characteristic group
2914- 2905, 28 cm ⁻¹	CH symmetric and asymmetric stretching
1461cm ⁻¹	CH ₂ bending
720 cm ⁻¹	vibration of CH ₂
1756-1744 cm ⁻¹	Ester carbonyl group
1190-1090 cm ⁻¹	O-C=O stretching
1024	C-O stretching
1639-1600 cm ⁻¹	C=C bond

MAgPE blend and its nanocomposites.

- $(1756-1749) \xrightarrow{-1}, 1190 \xrightarrow{-1}, 1090 \xrightarrow{-1} (0-C=0)$ and the second , II U 🛣
- LLDPE/LDPE/MA, PE ((L_{3}) . (L_{0}) , (L_{1}) , (L_{1}) , (L_{2}) ,
- 5. _____, ... 6.4%,, LLDPE/LDPE/PLA/MA, PE/, ..., ... $-PE \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \begin{bmatrix} 1 \\$ U ¥⊠,.,...

Acknowledgements

The authors would like to acknowledge for FTIR analysis to Mr. Deepak Sharma from CDRI (Central Drug Research Institute), Lucknow, Uttar Pradesh, India.

References

- 1. Hæ\\æi&}^} M, K@æààæ: F, A|à^¦c••[} AC (2005) Bi[å^*¦æåæɑi[} [-][|^^c@^|^}^ followed by assimilation of degradation products. Biopolymers Online
- 2. E**å}• HO, Mi||• J, H[| TA, S&[cc G (1971) Bi[å^c^li[!æci[] æ}å ài[å^*læåæci[] of synthetic polymers. Soc Appl Bacteriol Symp Ser, pp: 267-279.
- Gælli P, V^&^||i[G (2004) P[|^[|^, }•: c@^ {[•c] }[{i•i}* |æ!*^ c[] { { aet*^ c[i] { aet*^ c[i] { aet*^ c[i] { aet*^ c[i] { aet* c[i] Chemistry 42: 396-415.
- 4. S`å@æ\æ¦ M, D[à|^ M, M`lc@^ PS, V^}\æc^•æ} R (2008) Mæli}^ {i&![à^mediated biodegradation of low-and high-density polyethylenes. International Biodeterioration & Biodegradation 61: 203-213.
- 6. B[c^|0] G, Q`^i;[• A, Mæ&@æå[A, Fiæ)*i[•æ P, F^\;^i;æ J (2004) E}@æ}&^{^}c[-c@^c@^'{[[¢iåæciç^å^*iæåæài]ic^[-][[^•c^;^}^à à^ &@^{i&æ]} {[åi,&æci[}.P[|^{^; å^*iæåæci[}æ}å •cæài]ic^86:493-497.
- 7. A|à^¦c••[} AC (1977) Sc ăi^• [} Mi}^¦æ|i:ædi[} [~ 14C Læà^||^å P[|^^c@^|^}^• in Aerobic Biodegradation and Aqueous Aging. Royal Institute of Technology.
- 8. Albertsson AC (1978) Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. $J[^{+}]_{a} [-A]]_{a} P[^{+}S_{a}^{+}] \approx 1233.$
- 9. A {i} M (1974) P@[c[-i]sister^å [¢iåæci[} [-][[^^c@^|^}^ ^_^&c [-]@[c[-•^}•ici:^i•. E`i[]^æ} P[[^ {^i J[`i]æ! 10: 1019-1028.
- 10. Osawa Z, Kurisu N, Nagashima K, Nakano K (1979) The effect of transition {^cæ| •c^æ¦æc^• [} c@^]@[c[å^*¦æåæci[} [~][|^^c@^|^}^. J[`'}æ| [~ A]]|å^å polymer science 23: 3583-3590.