4UBUVT PG 3FNFEJBUJPO "QQSPBDIFT

Shweta Kulshreshtha*

*Corresponding author: Shweta Kulshreshtha, Amity Institute of Biotechnology, Amity University Rajasthan, 14 Gopal Bari, Ajmer Road, Jaipur-302 006, Rajasthan, India, E-mail: shweta_kul17@rediffmail.com

Received June 13, 2016; Accepted June 14, 2016; Published June 20, 2016

Citation: Kulshreshtha S (2016) Status of Remediation Approaches. J Bioremediat Biodegrad 7: e176. doi: 10.4172/2155-6199.1000e176

Copyright: © 2016 Kulshreshtha S. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

References

- Barh A, Singh S, Chandra D, Pankaj P, Pandey RK, et al. (2015) Enhanced Bioremediation techniques for agricultural soils. Int J Curr Res Aca Rev 3: 166-173.
- Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480: 1-9.
- Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11: 286-289.
- Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, et al. (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8: 47-59.
- Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters 7: 191-204.
- Liu Y, Su G, Zhang B, Jiang G, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136: 872.