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involvement of the parieto-occipital areas of the brain; and a frontal 
variant, in which patients have predominant executive dysfunction from 
frontal involvement [5].

How does one explain the differences in age of onset? How do does 
one account for the spectrum of clinical presentations given our current 
knowledge of the pathomechanisms of AD in the light of the misfolding 
and aggregation of specific proteins?

In our studies of AD, we believe that there are differences between 
young and old onset disease. In our research, we have found that most 
young-onset AD patients do not carry mutations associated with familial 
AD [6], an observation shared by others [7,8]. Less than 1% of our 
cohort with AD had a mutation in the Amyloid Precursor Protein gene 
(APP) or presenilin-1 or 2. Also, most late-onset AD patients do not 
carry mutations. They might carry the APOE-4 genotype, which seems 
to predispose to amyloidosis. If assumed that most familial AD is not 
due to genetic mutations, how does one then explain the development 
of AD through the life spectrum? How does one explain the sporadic 
burden of this disorder which, throughout the 21st century, has become 
a global public health problem? Furthermore, how does one account for 
differences in presentation in AD, and in particular young-onset AD, 
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Introduction 
Every day in my clinical work I ask the question: Why do young 

adults develop sporadic Alzheimer’s disease (AD), Parkinson’s disease 
(PD) and other neurodegenerative disorders? This work attempts to set 
out the reasons as to why this might happen in the absence of genetic 
mutations.

The pathology of AD, PD, Frontotemporal Dementia (FTD), Motor 
Neuron Disease (MND) and prion diseases share common properties 
including protein-protein interactions, cellular reactions involving 
microglia, inflammatory processes, prion-like propagation through 
a neuronal network, resulting in synaptic and neuronal loss. The 
misfolding and aggregation of specific proteins seems to be an early and 
obligatory event in all of these disorders of which the antecedents are 
unknown. Studies in prion diseases and AD implicate the conversion 
of disease specific proteins into aggregates of prion-like beta-sheets as 
a fundamental process. It appears that prion-like corrupted protein 
templates are a feature of these neurodegenerative disorders. Misfolding, 
aggregation, trafficking and pathogenicity of the involved proteins are 
fundamental mechanisms shared by the common neurodegenerative 
disorders, and are responsible for significant global burden of disease 
and costs [1,2]. It is therefore essential to understand this process.

AD may present at different ages. AD may be young onset- that is, 
begins before the age of 65 years- or old onset- starting after 65 [3,4]. 
Furthermore, AD can present in different ways. For example, there is 
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in terms of a typical amnestic presentation, posterior cortical atrophy, 
linguistic presentations and frontal variants? How, in the modern era, 
does one account for these observations? Additionally, how does one 
explain these differences given our understanding of misfolding and 
aggregation of specific proteins in the absence of gene mutations? If the 
gene mutation hypothesis only accounts for the minority of AD, then 
what is the fundamental process driving the remainder of AD? These 
considerations not only apply to AD, but are relevant to prion diseases 
in their different syndromic presentations; and are also relevant to 
PD, MND and FTD. What is it that drives the fundamental processes 
converting a healthy brain into a dementing brain secondary to the 
processes of misfolding, aggregation, propagation through a neuronal 
network with synaptic and neuronal loss?

AD, PD, prion diseases, MND and FTD are sporadic in the 
majority, and not related to gene mutations [7,9-14]. Could it be that 
the fundamental process driving the origins of these neurodegenerative 
disorders is stochastic?—that is, fundamental variation in the sequence 
of key proteins or other proteomic changes: prion proteins in Creutzfeld 
Jakob Disease (CJD), tau and Aβ peptides in AD, α-synuclein in PD, 
a number of proteins in MND and FTD (C9orf72, Tau on PGRN), 
all leading to devastating consequences of inexorably progressive 
neurodegenerative diseases. It is speculated that random variation in 
protein sequences (or other proteomic divergence) of key proteins is 
a fundamental process. Stochastic events in brain protein synthesis 
may be physiological and essential and would be predicted in certain 
circumstances, such as storage and transmission of information [15]. 
Deviations in protein sequences are probably part of normal brain 
function which, in some individuals results in neurodegeneration. 
It is this concept that is being developed in this research; that is, the 
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can accumulate, thereby complicating stochastic change and protein 
expression. For example, diabetes in middle age and elderly individuals 
probably intensifies non-enzymatic glycosylation occurring in the 
human body. Thus, functional decline in proteins facilitates aging. 

Randomness in amino acid sequences occurs by stochastic 
processes and natural selection will eliminate unsuitable sequences 
[23]. How does microevolution coordinate the macroevolution and 
how does natural selection play a role in this process? Stochastic aspects 
of biochemical reactions create the possibility of changes in cellular 
elements; by contrast, mechanical and biochemical loads provide 
the direction for such changes. Biochemical reactions have intrinsic 
randomness in the reproduction of molecules. Natural selection not 
only eliminates unsuitable traits, but also guides the formation of new 
and favourable characteristics. 

Stochasticity and biochemical reactions

Protein molecules can be modified by intracellular 
microenvironments, such as oxidation of cellular amino acid pools. The 
changes in biochemical environments also enhance the stochasticity of 
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If the unfolded protein response is ineffective it might result in 
neurodegenerative disorders. There is evidence that overactivity of 
protein kinase RNA-like ER kinase (PERK, encoded by EIF2AK3) 
directly contributes to pathological processes that are critical in the 
reduction of neuronal proteins involved in learning and memory [53].

The unfolded protein response might involve a number of different 
mechanisms including the inositol requiring enzyme 1A, the PKR-like 
ER kinase dependent phosphorylation, and the ATF6A which enable 
the removal of misfolded proteins from the endoplasmic reticulum 
[52]. Molecular chaperones seem to be important in this process: 

chaperone triggering factors seem to prevent peptides and proteins 
from misfolding as they emerge from the endoplasmic reticulum by 
influencing the hydrophobic residues and to protect them from the 
cell’s polar interior stopping their misfolding and potential for disease- 
chaperone function therefore is also important in the unfolded protein 
response and the mechanisms of neurodegeneration and stochasticity 
(Figure 3).

Heat shock proteins and, in particular, heat shock protein 70 
(Hsp70 – a molecular chaperone) are up-regulated by different 
pathological mechanisms and defend the proteome. Hsp70 stabilizes 

Figure 1: Potential sites for stochastic errors leading to sporadic neurodegenerative disorders.

Figure 2: Posttranslational modifications, stochasticity and neurodegenerative disorders.
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lipid membranes and helps endocytosis, prevents apoptosis, enhances 
cellular survival and facilitates interaction with the immune system 
[54]. These membrane and lipid associated functions of Hsp70, if 
disrupted in pathological states like AD and other neurodegenerative 
disorders, might prevent autophagy/lysomal dysfunction leading to 
neuronal death from the aggregation of toxic proteins.

It is important to stress that molecular chaperones help to stop 
misfolding and to restore proteins to their normal shape. Identification 
of abnormal proteins by the ubiquitin proteasome system also involves 
chaperones. A conformational effect of chaperones makes polypeptides 
and proteins less soluble and unable to be incorporated into the 
degradation aggresome system leading to disease. Chaperones also 
disturb signalling pathways that stimulate apoptosis [55-60].

There are many protein variants generated from a limited number 
of genes. There are several million proteins in the human body 
generated from about 15,000 genes. How do these proteins arise? The 
protein variants make up the proteoform- which arise from single genes 
and represent a unique combination of amino acid sequences with 
variations. This proteoform variation arises from several mechanisms: 
alternative splicing, endogenous proteolytic processing and post-
translational modifications to generate the proteoform. There are a 
number of possible proteoforms from a single coding gene and only 
one or a few sequence variations that correlate with disease. Proteins 
are versatile macromolecules with a wide range of functions including 
catalysis, regulation, communication, mechanical support and 
movement of transport. The generation of proteoform diversity has 
major biological significance and represents a sige 
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aggressiveness and site-specific origin such as posterior cortical atrophy 
[5,16]. This concept is similar to that of the Prion diseases.

It is also speculated that in disorders like PD, the second most 
common sporadic neurodegenerative disorder, α-synuclein, a peptide 
that can also undergo oligomerization and fibrillar formation, can start at 
particular parts in the brain; e.g., substantia nigra, leading to traditional 
PD or in the cerebral cortex leading to dementia with Lewy body 
disease, both of which are part of a spectrum. Similar considerations 
might explain why some patients present with unilateral or lower limb 
disease. This approach probably accounts for the deposition of tau in 
other tauopathies such as FTD, including Progressive Supranuclear 
Palsy (PSP). That is, the anatomical site for the stochastically impaired 
protein leading to misfolding and, in a certain microenvironmental 
milieu, neurodegeneration. Similarly, in FTD another entity related to 
tau, TDP-43 or C9orf72, the initial molecular step might occur, say in 
the right temporal lobe in FTD, leading to the right temporal variant, 
in primary progressive aphasia within the left temporal lobe linguistic 
variants such as primary progressive non-fluent aphasia or semantic 
dementia; it can also affect the frontal lobes leading to the behavioural 
variant of FTD [85-88].

In conclusion, stochasticity is fundamental to the development of 
sporadic neurodegenerative disorders. An abnormal peptide sequence 
or other molecular variation, results in abnormal folding in a particular 
part of the brain (that is, anatomical specificity) as a result of the 
peptides’ biophysical features and intracellular milieu. The peptide 
folds in a certain way and, due to microenvironmental influences, and 
the biophysical properties of the misfolded protein, creates nuclear 
effects such that the misfolding peptide causes overproduction of the 
aberrant sequence with its unique physicochemical characteristics, 
that then sets a chain reaction generating aggregation of the aberrant 
misfolded protein, which bypasses the cell’s normal mechanisms, such 
as the proteasome/aggresome system. The aggregated misfolded protein 
is excreted into the extracellular environment, taken up by surrounding 
cells, resulting in the progression of neurodegeneration. This process 

may be stimulated by head injury, stress, APOE and infection including 
Herpes virus or, as recently discovered, the bacteria Porphyromonas 
gingivalis, one of the principle causes of chronic periodontitis [89-91]. 
There may be contribution from long noncoding RNAs (IncRNAs) in 
this process [92].

This process can be summarised in a matrix equation (Figure 4). In 
the case of young-onset AD and other early-onset neurodegenerative 
disorders, that are not genetic, the nature of the sequence change 
and misfolding in certain microenvironmental and biophysical 
circumstances, lack of normal degradation and overproduction leads 
to an aggressive neurodegenerative disease. In the old onset group, 
with time the cellular mechanisms such as aggresomal and chaperone 
functions become less capable, leading to the neurodegenerative 
process. 
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in gene and protein expression in the brain support the concept that 
stochastic principles are probably important in neuronal functions in 
general [99]. Our findings hint at the importance of these processes 
in brain evolution [100-109]. Our conclusions are supported by recent 
findings that age and neurodegeneration increase mutations in single 
human neurons [93].

Conclusion
The considerations presented in this paper suggest avenues 

for further research and the possibilities of new treatments for 
neurodegenerative disorders. Experimental studies in the future, using 
measurements in single cells, will help to answer some of the questions 
raised in this work.
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