Journal of Medical Implants & Surgery

Short Communication

Utility of Carbon Fiber Implants in Orthopedic Surgery

Jarnail Singh*

Department of Surgeon Technology, GTB Garh, Moga, Punjab, India

0.4

*Corresponding author: Jarnail Singh, Department of Surgeon Technology, GTB Garh, Moga, Punjab, India, E-mail: jarnailsolanki@gmail.com

Received: 03-May-2022, Manuscript No. jmis-22-62862; Editor assigned: 05-May-2022, PreQC No. jmis-22-62862 (PQ); Reviewed: 21-May-2022, QC No. jmis-22-62862; Revised: 26-May-2022, Manuscript No. jmis-22-62862 (R); Published: 31-May-2022, DOI: 10.4172/jmis.1000136

 ${\bf Citation:}\ Singh J (2022) \ Utility of Carbon Fiber Implants in Orthopedic Surgery. J Med Imp Surg 7: 136.$

Copyright: © 2022 Singh J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Acknowledgement

-11⁶

Con ict of Interest

-11

References

 Aidoo J, HKA, Petrou MF (2004) Fatigue Behavior of Carbon Fiber Reinforced Polymer-Strengthened Concrete Bridge Girders. J Compo Constr 8: 501-509.

- Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomat 28: 4845-4869.
- Czaderski CM (2004) Flexural Behaviour of Concrete Beams Strengthened with Pre-stressed Carbon Fibre Reinforced Polymer Sheets Subjected to Sustained Loading and Low Temperature. Mat Struc 38: 39-46
- 4. Huang WY, Yeh CL (2012) Ö^ç^|[] {^}di [-i, àt][à|æ•di &`|c`|^i i}i c@|^^É āi {^}•i[}æliæ&dçæc^åi&ætà[]i, à^!Éàæ•^âi•&æ [|åi-[!i, [`}åi@^æli}*. J Mater Sci Mater Med 23: 1465-1478.
- Utzschneider S, Becker F (2010) 0} 'æ { {∞[¹/_h | ••] [}•^A k ∞*∞i}•ok åi ^!^}ok &∞ià[}k,à^!č!^i}-[k^âkÚÒÒSk, ^∞ik]æki&|^•k&[{]∞!^âk, is@kWPTYÚÒki}kçiç[. Acta Biomaterialia 6: 4296-4304.