天美传媒

ISSN: 2165-7904

Journal of Obesity & Weight Loss Therapy
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

8-Weeks of β-GPA Treatment Reduces Body Mass While Positively Altering Translation Initiation in Obese Skeletal Muscle

Joshua C. Drake, Lauryn Benninger and David L. Williamson*
Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, SUNY, Buffalo, NY 14214
Corresponding Author : David L. Williamson, PhD
Assistant Professor
University at Buffalo SUNY
School of Public Health and Health Professions
Department of Exercise and Nutrition Sciences
214A Kimball Tower (office) / 5 Sherman (lab)
Buffalo, NY 14214, USA
Tel: (716) 829-6758
Fax: (716) 829-2428
E-mail: davidwil@buffalo.edu
Received November 08, 2011; Accepted November 19, 2011; Published November 21, 2011
Citation: Drake JC, Benninger L, Williamson DL (2011) 8-Weeks of β-GPA Treatment Reduces Body Mass While Positively Altering Translation Initiation in Obese Skeletal Muscle. J Obes Weig los Ther 1:101. doi:10.4172/2165-7904.1000101
Copyright: © 2011 Drake JC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The aim of this study was to determine how 3-guanidinopropionic acid (?-GPA) treatment, that reduces body mass, alters obese skeletal muscle mass and regulatory mechanisms controlling muscle mass. Lean (L) and ob/ ob (O) mice were fed either a control (C) or a ?-GPA-containing (F) diet for 8 weeks. Body mass decreased in both ?-GPA treated groups. Despite a lower plantar flexor-complex muscle mass, both ?-GPA treated groups achieved the same muscle mass. Raptor-mammalian Target of Rapamycin protein association was lower in OC muscle (vs. LC) and was not altered with ?-GPA, despite reductions in S6K1 activation (OF only). 4E-BP1 phosphorylation increased in the ?-GPA treated groups, but only the OF mice displayed an increase in eIF4E phosphorylation that corresponded with a trending increase in eIF4G-eIF4E association. Thus, long-term ?-GPA treatment augments obesity-induced dysregulation of mechanisms controlling skeletal muscle mass to that of the lean, while reducing body mass.

Keywords

Citations : 2305

Indexed In
  • Index Copernicus
  • Google Scholar
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • CABI full text
  • Cab direct
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • University of Bristol
  • Pubmed
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top