Research Article
A Novel Approach for Microsensing: Detecting and Identifying Eigenmodes of Sensing Objects
Dan T Nguyen* and Robert A Norwood
College of Optical Sciences, University of Arizona, 1630 E. University Boulevard, Tucson, Arizona 85721, USA
- *Corresponding Author:
- Dan T Nguyen
Research Scientist
College of Optical Sciences University of Arizona
1630 E. University Boulevard
Tucson, Arizona 85721, USA
Tel: 717-531-6618
E-mail: dnguyen@optics.arizona.edu
Received Date: April 08, 2014; Accepted Date: May 02, 2014; Published Date: May 06, 2014
Citation: Nguyen DT, Norwood RA (2014) A Novel Approach for Microsensing:Detecting and Identifying Eigenmodes of Sensing Objects. J Anal Bioanal Tech S7:015. doi: 10.4172/2155-9872.S7-015
Copyright: © 2014 Nguyen DT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
A novel and straight forward approach for analysis of whispering gallery-mode micro cavity sensing is presented using the finite difference time-domain (FDTD) method. The FDTD simulation shows that eigenmodes of sensing objects (SOs) at the micro-scale can be detected as SO signatures, and therefore provide more accurate and robust information on the objects. Thus, detecting eigenmodes as signatures of SOs with WGM microcavities affords a novel biosensing approach based on object recognition. The FDTD simulation not only describes the circulation of the light in a whispering gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important parameters of the sensing system, such as scattering and radiation losses.