Research Article
A Novel Catechol Electrochemical Sensor Based on Cobalt Hexacyanoferrate/ (CoHCF)/Au/SBA-15
Yaqian Yan, Linjing Wu, Qianqiong Guo and Shasheng Huang*
Life and Environmental Science College, Hanghai Normal University, Shanghai, PR China
- *Corresponding Author:
- Shasheng Huang
Life and Environmental Science College
Hanghai Normal University
Shanghai, 200234, PR China
Tel: +86-021-64321828
Fax: +86-021-64321828
E-mail: sshuang@shnu.edu.cn
Received date: October 12, 2015; Accepted date: October 29, 2015; Published date: November 05, 2015
Citation: Yan Y, Wu L, Guo Q, Huang S (2015) A Novel Catechol Electrochemical Sensor Based on Cobalt Hexacyanoferrate/(CoHCF)/Au/SBA-15. J Anal Bioanal Tech 6:290. doi:10.4172/2155-9872.1000290
Copyright: © 2015 Yan Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
A novel electrochemical sensor for catechol was developed by electrodepositing HAuCl4 and cobalt hexacyanoferrate (CoHCF) on an ordered mesoporous SBA-15 decorated glassy carbon electrode (GCE). The CoHCF/Au/SBA-15 film was characterized by scanning electron microscopy (SEM) and impedance spectra. A mesoporous SBA-15 was used as a platform that enlarged the surface area of the working electrode. The CoHCF/ Au/SBA-15 modified electrode showed good electrocatalytic activity to catechol and the electrocatalytic response was measured using cyclic voltammetry and Amperometric i-t curve. The electrochemical performance of the sensor for catechol was further enhanced due to the deposition of Au on the electrode surface. Under the optimal conditions, the sensor showed a linear range from 3.0 × 10-7M to 5.1 × 10-5M of catechol, with a detection limit of 50 nM (S/N=3). Good reproducibility, stability and good selectivity in the presence of numerous organic phenolics made the CoHCF/ Au/SBA-15 modified electrodes applicable to the determination of catechol in the various water samples.