天美传媒

ISSN: 2168-9717

Journal of Architectural Engineering Technology
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Parametric Study on Analysis and Design of Permanently Anchored Secant Pile Wall for Earth Quake Loading

Emmanuel EJ*

Addis Ababa University, School of Technology, China State Construction Engineering Co Ltd, Ethiopia

*Corresponding Author:
Emmanuel EJ
Addis Ababa University, School of Technology
China State Construction Engineering Co Ltd
Ethiopia
Tel: +251 92 262 7694
E-mail: emuriat25@yahoo.co.uk

Received Date: December 20, 2016; Accepted Date: December 24, 2016; Published Date: December 28, 2016

Citation: Emmanuel EJ (2016) Parametric Study on Analysis and Design of Permanently Anchored Secant Pile Wall for Earth Quake Loading. J Archit Eng Tech 5: 181. doi: 10.4172/2168-9717.1000181

Copyright: © 2016 Emmanuel EJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Due to space limitations in urban areas, deep excavation in to the ground has become a common practice worldwide. Deep excavations are supported by conventional retaining walls: sheet pile walls, braced walls, diaphragm walls and secant pile walls. An advantage of secant pile wall compared with other excavation supporting systems is that they are the most economical methods of creating an effective water control barriers for building structural walls. The analysis of these deep excavations requires considerations of; nonlinear, dynamic and involves consideration of soil parameters, deformation, interaction of soil and retaining configuration. Thus, in order to accurately describe the behaviour of the anchored secant pile for earthquake loading, 3D finite element simulation was applied. The study considering earth pressure, plastic analysis, and soil deformation was carried out. The analysis indicated that for 20 m excavation step in fourth stage, incremental lateral displacement was 55.2 mm and total displacement was 110.4 mm. The analysis indicated that the deeper the foundation, the larger the deformation. The real accelerogram of Loma Prieta earthquake at Del Valle Dam Station with moment magnitude 7.1 occurring at epicentral distance 66 (18 Oct, 1989) was used in the study. In order to accurately study the response of the anchored secant pile to earthquake loading; it is suggested to carry out the relevant tests to determine the right stiffness parameters. Further investigation on parameters (density and shear modulus) and other conditions that affect seismic analysis.

Keywords

Citations : 1157

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • Academic Keys
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Euro Pub
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top