A GFP Retinal Prion Proteins Intracellular Trafficking via Endocytic Intermediates
Received Date: Jul 05, 2023 / Accepted Date: Jul 29, 2023 / Published Date: Jul 31, 2023
Abstract
The prion protein (PrP) is a key molecule implicated in neurodegenerative disorders. Understanding its intracellular trafficking is essential for unraveling its physiological and pathological functions. This article focuses on the intracellular trafficking of a green fluorescent protein (GFP) tagged PrP in retinal cells, specifically exploring its transport via endocytic intermediates. Endocytic pathways, including clathrin-mediated endocytosis, caveolaemediated endocytosis, and macropinocytosis, play a crucial role in PrP internalization and trafficking. Endocytic intermediates, such as early endosomes, late endosomes, and lysosomes, are involved in sorting, recycling, and degradation of endocytosed proteins. Live-cell imaging and colocalization studies have provided insights into GFPPrP’s movement and localization within these organelles. Studies reveal rapid internalization of PrP via clathrinmediated endocytosis, with subsequent transport to early endosomes. A fraction of PrP is recycled, while the remainder progresses to late endosomes and lysosomes for degradation. Elucidating the intracellular trafficking of GFP-PrP and its association with endocytic intermediates enhances our understanding of PrP’s functions and implications in neurodegenerative diseases. Further investigations are needed to explore the molecular machinery involved and the impact of disease-associated mutations. This knowledge may contribute to potential therapeutic strategies for prion diseases.
Citation: Mondal T (2023) A GFP Retinal Prion Protein’s Intracellular Trafficking via Endocytic Intermediates. J Clin Diabetes 7: 180. Doi: 10.4172/jcds.1000180
Copyright: © 2023 Mondal T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
天美传媒 Access Journals
Article Tools
Article Usage
- Total views: 525
- [From(publication date): 0-2023 - Jan 11, 2025]
- Breakdown by view type
- HTML page views: 436
- PDF downloads: 89