Effects of the Amount of Poly (Vinylpyrrolidone) on the Characteristics of Silver Nanoparticles Produced Using a Modified Thermal Treatment Method
Received Date: Nov 01, 2022 / Published Date: Nov 30, 2022
Abstract
By using a modified thermal treatment process with successive flows of oxygen and nitrogen, very small and pure silver nanoparticles were produced. By using various methods, the structural and optical characteristics of the calcined silver nanoparticles at 600 °C with various Poly (vinylpyrrolidone) concentrations ranging from 2% to 4% were investigated. At a specific concentration of Poly (vinylpyrrolidone), the formation of pure Ag nanoparticles was seen using Fourier transform infrared spectroscopy. The X-ray powder diffraction spectra show that for all concentrations of poly (vinylpyrrolidone), the amorphous sample at 30 °C changed into cubic crystalline nanostructures at the calcination temperatures [1]. By increasing the quantities of Poly (vinylpyrrolidone), from 4.61 nm at 2% to 2.49 nm at 4%, spherical silver nanoparticles with smaller average particle sizes were produced, as seen in transmission electron microscopy images (vinylpyrrolidone). The conduction band of Ag nanoparticles increased with increasing Poly (vinylpyrrolidone) concentrations, from 2.83 eV at 2% Poly (vinylpyrrolidone) to 2.94 eV at 4% Poly(vinylpyrrolidone), due to decreasing particle size. The optical properties were investigated using a UV-vis absorption spectrophotometer. Due to the smaller particle size, which corresponded to fewer atoms making up the metal nanoparticles, there was less attraction between conduction electrons and metal ions.
Citation: Fibshah R (2022) Effects of the Amount of Poly (Vinylpyrrolidone) on the Characteristics of Silver Nanoparticles Produced Using a Modified Thermal Treatment Method. J Powder Metall Min 6: 336.
Copyright: © 2022 Fibshah R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
天美传媒 Access Journals
Article Usage
- Total views: 1383
- [From(publication date): 0-2022 - Jan 10, 2025]
- Breakdown by view type
- HTML page views: 1182
- PDF downloads: 201