天美传媒

Journal of Diabetes & Clinical Practice
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Mini Review   
  • J Diabetes Clin Prac 2023, Vol 6(4): 198
  • DOI: 10.4172/jdce.1000198

Primary Afferent Nerve Function in Human Diabetic Neuropathy-Induced Allodynia

Peyton Blake*
Department of Neurology Science, South Georgia
*Corresponding Author : Peyton Blake, Department of Neurology Science, South Georgia, Email: bla908peyton@gmail.com

Received Date: Jul 05, 2023 / Accepted Date: Jul 29, 2023 / Published Date: Jul 31, 2023

Abstract

Diabetic neuropathy-induced allodynia is a distressing sensory abnormality characterized by the perception of pain in response to non-painful stimuli. This phenomenon significantly impairs the quality of life for individuals with diabetes. Primary afferent nerves, responsible for pain signal transmission, undergo structural and functional changes in diabetic neuropathy. Chronic hyperglycemia leads to nerve damage and sensitization of primary afferent nerves, contributing to aberrant pain processing. Mechanisms underlying allodynia include axonal degeneration, demyelination, metabolic disturbances, inflammation, and altered expression of ion channels and receptors. Upregulated sodium channels, such as Nav1.7 and Nav1.8, enhance nerve excitability, while changes in TRP channels (TRPV1, TRPA1) increase sensitivity to thermal and chemical stimuli. Altered opioid receptors, neurotransmitters (substance P, CGRP), and neurotrophic factors further modulate pain perception. Understanding primary afferent nerve function in diabetic neuropathy-induced allodynia may aid in developing targeted therapies, including channel blockers, TRP channel antagonists, and anti-inflammatory agents, to alleviate this debilitating symptom.

Citation: Blake P (2023) Primary Afferent Nerve Function in Human Diabetic Neuropathy-Induced Allodynia. J Diabetes Clin Prac 6: 198. Doi: 10.4172/jdce.1000198

Copyright: © 2023 Blake P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top