Safety Lesson: Transferring of Patients in Hospitals using Rack and Pinion based Mechanism
Received Date: Apr 24, 2021 / Accepted Date: May 25, 2021 / Published Date: May 31, 2021
Abstract
As of now the wealth within the health care industry is being exported to Japan and the China for equipment that Pakistan can produce domestically. Our bed is just one step that will allow Pakistan to begin producing its own quality medical equipment. If this equipment is domestically produced it will allow quality healthcare to become more affordable and accessible to many Pakistanis citizens. The purpose of this paper is to give necessary infrastructure to understand design related to the comfort level of a patient healthcare quality. Different research articles from international journals have been studied to review patient satisfaction, comfort, and healthcare quality. Methodology has been developed for the design of modern hospital cot with 5-axis motion. This work will be useful for designing sliding motions in hospital beds to provide patients more comfort when they are already battling with the disease. Task of elevation and declination of head and legs at an angle of 56.3 degree have been achieved. It is concluded in this study that doctors can move patients without taking help of attending staff from one bed to another using sliding mechanism using rack-pinion and controllers. This full scaled bed structure can carry load of 250kg. The sliding mechanism used in this bed is a replacement of steward to move patient from one bed to another. These steps would a technological evaluation and that this bed design would help in expanded Pakistan’s health care industry.
Keywords: Reverse switch (RS); Revolution per minute (RPM); Steward; Healthcare; Sleeping surface (SS)
Citation: Durez A, Shehwar H, Ahmad N (2021) Safety Lesson: Transferring of Patients in Hospitals using Rack and Pinion based Mechanism. Occup Med Health Aff 9.347 Doi: 10.4172/2329-6879.1000347
Copyright: © 2021 Durez A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
天美传媒 Access Journals
Article Tools
Article Usage
- Total views: 1508
- [From(publication date): 0-2021 - Jan 10, 2025]
- Breakdown by view type
- HTML page views: 895
- PDF downloads: 613