Research Article
Bioaccumulation of ZnO-NPs in Earthworm Eisenia fetida (Savigny)
Shruti Gupta and Shweta Yadav* | |
Department of Zoology, School of Biological Sciences, Dr HS Gour Central University, India | |
Corresponding Author : | Shweta Yadav Department of Zoology, School of Biological Sciences Dr HS Gour Central University, India Tel: 9479983812 E-mail: kmshweta3@yahoo.com |
Received July 11, 2014; Accepted September 20, 2014; Published September 22, 2014 | |
Citation: Gupta S, Yadav S (2014) Bioaccumulation of ZnO-NPs in Earthworm Eisenia fetida (Savigny). J Bioremed Biodeg 5:250. doi:10.4172/2155-6199.1000250 | |
Copyright: © 2014 Gupta S, et al . This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
Related article at |
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in nano fertilizers, sunscreens, biosensors, food additives, pigments, rubber manufacture and electronic materials. With wide application of ZnO-NPs, concern has been raised about its unintentional health hazards and environmental impacts. In the present study, we tested toxicity and uptake of ZnO-NPs as a marker of potential ecological harm. We provided multiple lines of evidence including, percentage of mortality, DNA damage, superoxide dismutase, lignin peroxidase, cellulolytic activity and transmission electron microscopy of coelomic fluid and earthworm tissue to express bioavailability and bioaccumulation of ZnONPs from soil to earthworm. The aggregates of NPs were observed in coelomic fluid and their tissues, away from portal of their entry. The results from response of antioxidant system combined with DNA damage indicated that ZnO-NPs could not induce significant damage to earthworms. The study demonstrated bioavailability of ZnO-NPs was very high throughout the earthworm cross sections in all exposures of NPs particularly at exposure of 10nm sized ZnO-NPs and revealed that intact NPs can be taken up by earthworm from soil and having good potential of bioremediation into non- toxic forms.