Research Article
Catalytic Reduction of 4-Nitrophenol Using Biogenic Silver Nanoparticles Derived from Papaya (Carica papaya) Peel extract
CH Prasad, K Srinivasulu and P Venkateswarlu*
Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
- *Corresponding Author:
- P Venkateswarlu
Biopolymers and Thermo Physical Laboratories
Department of Chemistry, Sri Venkateswara University
Tirupati-517 502, Andhra Pradesh, India
Tel: +91-9393600444
E-mail: ponneri.venkateswarlu@gmail.com
Received date: October 05, 2015; Accepted date: October 14, 2015; Published date: October 21, 2015
Citation: Prasad CH, Srinivasulu K, Venkateswarlu P (2015) Catalytic Reduction of 4-Nitrophenol Using Biogenic Silver Nanoparticles Derived from Papaya (Carica papaya) Peel extract. Ind Chem 天美传媒 Access 1:104. doi: 10.4172/2469-9764.1000104
Copyright: © 2015 Prasad CH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
A facile and green method is described for the synthesis of Silver (Ag) nanoparticles (NPs) from the extract of Papaya Peel as capping and reducing agent. The green synthesized Ag NPs were characterized by diverse techniques such as powder X-ray diffraction (XRD), UV-visible, Fourier transform-infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy (EDS) . These clearly reveal that the structure of the synthesized silver nanoparticles was face centered cubic. The nanoparticles obtained from Papaya Peel extract were spherical shape with an average diameter of 3-5 nm. Furthermore, the catalytic activity of synthesized Ag NPs in the reduction of 4-nitrophenol (4-NP) was studied by UVvis absorption spectroscopy. The synthesized Ag NPs have a good catalytic activity on the reduction of 4-nitrophenol (4-NP) by Papaya Peel extract which is confirmed by the decrease in absorbance maximum values of 4-nitrophenol (4-NP) with respect to time using UV-vis absorption spectroscopy. An efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of Ag NPs and NaBH4 was observed and was found to depend upon the nanoparticle size or the peel extract concentration used for synthesis.