天美传媒

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enrichment of Phenol Degrading Moderately Halophilic Bacterial Consortium from Saline Environment

Krishnaswamy Veena Gayathri* and Namasivayam Vasudevan
Centre for Environmental Studies, Anna University, Chennai-6000 25, India
Corresponding Author : Krishnaswamy Veena Gayathri
Centre for Environmental Studies
Anna University, Chennai-6000 25, India
Tel: 0-91-044-222359029
E-mail: veenagayathri@yahoo.com
Received: July 24, 2010; Accepted: September 28, 2010; Published: October 01, 2010
Citation: Gayathri KV, Vasudevan N (2010) Enrichment of Phenol Degrading Moderately Halophilic Bacterial Consortium from Saline Environment. J Bioremed Biodegrad 1:104. doi:10.4172/2155-6199.1000104
Copyright: © 2010 Gayathri KV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadDownload

Abstract

A versatile, moderately halophilic bacterial consortium was developed for the biodegradation of phenolic compounds under saline conditions. The bacterial consortium was isolated from mixtures of soil from phenol contaminated sites and as well as from areas having proximity to saline environment. The isolated moderately halophilic bacterial consortium utilized different phenolic compounds as sole source of carbon source. Phenol was utilized by the consortium at a range of salt concentrations from 10- 150 g/L NaCl where the optimum degradation was achieved at 50 g/L of NaCl. The bacterial consortium utilized up to 300 mg/L of phenol most effi ciently than the individual strains present in the consortium under saline conditions. The 16S r-RNA gene analysis and biochemical tests showed that the bacterial consortium contained six bacterial strains, which were identifi ed as Bacillus cereus, Arthrobacter sp., Bacillus licheniformis, Halomonas salina, Bacillus pumilus and Pseudomonas aeruginosa. Such moderately halophilic bacterial consortium might be useful for the treatment of industrial saline wastewater, particularly, in environments contaminated with phenolic wastes.

Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top