Research Article
Metabolism and Preferential Utilization of Phenylacetic acid and 4-Hydroxyphenylacetic Acid in Pseudomonas putida CSV86
Rahul Shrivastava1, Hemant Purohit2 and Prashant S Phale1* | |
1Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India | |
2Environmental Genomics Unit, National Environmental Engineering Research Institute, Nagpur-440020, India | |
Corresponding Author : | Dr. Prashant S Phale Department of Biosciences and Bioengineering Indian Institute of Technology-Bombay Powai, Mumbai 400076, India Tel: +91-22-2576 7836 Fax: +91-22-2572 3480 E-mail: pphale@iitb.ac.in |
Received March 29, 2011; Accepted June 20, 2011; Published June 21, 2011 | |
Citation: Shrivastava R, Purohit H, Phale PS (2011) Metabolism and Preferential Utilization of Phenylacetic acid and 4-Hydroxyphenylacetic Acid in Pseudomonas putida CSV86. J Bioremed Biodegrad 2:120. doi:10.4172/2155-6199.1000120 | |
Copyright: © 2011 Shrivastava R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
Related article at |
Abstract
Metabolic pathways for phenylaceticacid (PA) and 4-hydroxyphenylacetic acid (4-HPA) from Pseudomonas putida CSV86 were elucidated. PA grown strain CSV86 cells showed higher oxygen-uptake on PA as compared to hydroxyphenylacetic acids. Detection of phenylacetyl-CoA ligase and absence of 4-hydroxyphenylacetic acid hydroxylase (4HPAH) and 3,4-dihydroxyphenylacetic acid-dioxygenase (3,4-DHPADO) activity supports this observation. 4-HPA grown cells showed oxygen-uptake on 4-HPA and 3,4-dihydroxyphenylacetic acid (3,4-DHPA) but showed significantly lower respiration rates on 2,5-dihydroxyphenylacetic acid and PA. Detection of 4HPAH and 3,4-DHPADO activities support the respiration data. Metabolic studies indicate that strain CSV86 metabolizes PA via phenylacetyl-CoA while 4-HPA via 3,4-DHPA pathway. Glucose grown cells showed lower activity of enzymes and respiration on PA, 4-HPA and 3,4-DHPA, suggesting that pathways are inducible. When grown on double carbon sources such as PA or 4-HPA plus glucose, CSV86 cells showed diauxic growth pattern with oxygen uptake on PA, 4-HPA and 3,4-DHPA in the first log-phase which was reduced during the second log-phase with increase in the respiration rate on glucose. This observation was supported by detection of high 4HPAH and 3,4-DHPADO activity in the first log-phase and glucose-6-phosphate dehydrogenase activity in the second log-phase. These results suggest that strain CSV86 utilizes PA and 4-HPA preferentially over glucose.