Research Article
Mycotoxicological Concerns with Sorghum, Millet and Sesame in Northern Nigeria
Apeh Daniel Ojochenemi1,2*, Ochai Daniel Ochai1, Adejumo Aderemi1, Muhammad Hadiza Lami1, Saidu Abubakar Ndaman1, Atehnkeng Joseph3, Adeyemi Rinde Henry1, Mailafiya Simeon Chidawa1 and Makun Hussaini Anthony1
1Department of Biochemistry, Federal University of Technology, Minna, Nigeria
2Department of Biosciences, Salem University, Lokoja, Nigeria
3International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- *Corresponding Author:
- Apeh Daniel Ojochenemi
Department of Biochemistry
Federal University of Technology, Minna, Nigeria
Tel: +2349058233573
E-mail: danapeh@salemuniversity.edu.ng (or) danapeh@gmail.com
Received date: September 01, 2016; Accepted date: September 15, 2016; Published date: September 20, 2016
Citation: Apen DO, Ochai DO, Adejumo A, Muhammad HL, Saidu AN, et al. (2016) Mycotoxicological Concerns with Sorghum, Millet and Sesame in Northern Nigeria. J Anal Bioanal Tech 7:336. doi:10.4172/2155-9872.1000336
Copyright: © 2016 Apen DO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Incidence of fungi and aflatoxin in sorghum, millet, sesame and their products in Northern Nigeria was investigated in 146 food samples including; sorghum and traditional beer (50), millet and millet dough (50), and sesame seed (50). Members of the Aspergillus, Fusarium, Pennicilium, Macrophomena, Cercospora, Phoma, Rhizopus, Alternaria and Curvularia species in order of predominance were identified. Aflatoxin analysis showed 28.6% sorghum (0.96-21.74 μg/Kg), 80% burukutu (1.27-8.82 μg/Kg), 20% pito (0.69-2.00 μg/Kg), 29% millet grain (1.05-14.96 μg/Kg), 26.3% millet dough (0.81-3.78 μg/Kg) and 21.7% sesame (0.79-60.05 μg/Kg) samples were unsafe for consumption. Fungi and aflatoxin levels were higher in sesame than millet and sorghum. Fungal load in sesame seeds increased with latitude, aflatoxin levels in millet and sorghum varied with temperature and relative humidity. Beer processing reduced the levels of aflatoxin from sorghum grain to beer, establishing a 47% and 25% carryover respectively. Higher tannin levels in the samples correlated with lower fungal loads however, Aspergillus niger, Fusarium and Pennicilium showed resistance to tannin. Legislative, regulatory and stakeholder involvement is key in the continuous effort to reduce the mycotoxin menace.