天美传媒

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Optimization of Phenol Degradation Using Pseudomonas aeruginosa (MTCC 7814) by Plackett-Burman Design and Response Surface Methodology

Pandimadevi M*, Venkatesh Prabhu M and Vinod Kumar V
Department of Biotechnology, SRM University, India
Corresponding Author : Pandimadevi M
Department of Biotechnology
SRM University, India
Tel: +91 9444145987
E-mail: pandimadevi.m@ktr.srmuniv.ac.in, pandimadevi2008@gmail.com
Received August 13, 2014; Accepted November 25, 2014; Published November 28, 2014
Citation: Pandimadevi M, Venkatesh Prabhu M, Vinod Kumar V (2014) Optimization of Phenol Degradation Using Pseudomonas aeruginosa (MTCC 7814) by Plackett- Burman Design and Response Surface Methodology. J Bioremed Biodeg 5:261. doi:10.4172/2155-6199.1000261
Copyright: © 2014 Pandimadevi M, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed Download

Abstract

In the present study, statistical screening and optimization of phenol degradation was done by Pseudomonas Aeruginosa (MTCC 7814), which can utilize phenol as a sole carbon and energy source. Nine medium variables Phenol, K2HPO4, K2H2PO4, MgSO4, (NH4)2SO4, MnSO4, FeSO4, NaCl and H3BO3 were screened by Plackett-Burman (PB) method. K2HPO4, (NH4)2SO4, MnSO4 and phenol were significant in PB method. Central composite design (CCD) and Response Surface Methodology (RSM) were applied to optimize the significant variables identified from the PB experiment. Statistical analysis of the experimental results showed optimal values were found to be KH2PO4 0.025 g/L, (NH4)2SO4 0.45 g/L, MnSO4 0.05 g/L and phenol 1 g/L with maximum phenol degradation of 83.86%. Maximum phenol degradation of 81.62% was observed in the validation experiment. This experimental result explained the model was fitted 97.32 % as compare with the result predicted by response surface method. This study indicated the excellent ability of Pseudomonas Aeruginosa to degrade phenol of high concentration.

Keywords

Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top