Research Article
Validated Liquid Chromatographic Method for Simultaneous Determination of Metformin, Pioglitazone, Sitagliptin, Repaglinide, Glibenclamide and Gliclazide - Application for Counterfeit Drug Analysis
Ehab F Elkady1, Asmaa A El-Zaher1, Hanan M Elwy2 and Mahmoud A Saleh2*
1Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Egypt
2National Organization for Drug Control and Research (NODCAR), Egypt
- *Corresponding Author:
- Mahmoud A. El Makarim M. Saleh
Makram Ebeid, 8th district, 11762
Nasr city, Cairo, Egypt
Tel: +2-01114516158
E-mail: mahmoud.saleh88@hotmail.com
Received date: October 26, 2015 Accepted date: November 12, 2015 Published date: November 19, 2015
Citation: Elkady EF, El-Zaher AA, Elwy MH, Saleh MA (2015) Validated Liquid Chromatographic Method for Simultaneous Determination of Metformin, Pioglitazone, Sitagliptin, Repaglinide, Glibenclamide and Gliclazide - Application for Counterfeit Drug Analysis. J Anal Bioanal Tech S13:007. doi:10.4172/2155-9872.S13-007
Copyright: © 2015 Elkady EF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
A rapid, precise and selective RP-LC method was developed for simultaneous determination of the widely used oral antidiabetic; metformin hydrochloride (MTF), with some commonly prescribed oral antidiabetics, namely; sitagliptin phosphate (SIT), pioglitazone hydrochloride (PGZ), gliclazide (GLZ), glibenclamide (GLB) and repaglinide (RPG). The chromatographic separation carried out using gradient elution mode with acetonitrile: 0.05M potassium dihydrogen phosphate (MKP) and 0.01M sodium octane sulphonate (SOS) (pH 3.55) at flow rate 0.85 ml/min on Kromasil 100-C18, (30 × 0.4 cm, 10 μm) at 40°C. UV detection was carried out at 220 nm. The method was validated according to ICH guidelines. Linearity, accuracy and precision were satisfactory over the concentration ranges (μg/ ml) of 0.05-205 for MTF, 0.05-100 for PGZ, GLB and SIT, 0.1-100 for RPG and 1-100 μg/ml for GLZ. The correlation coefficients were >0.99 for all analytes. Limits of quantification (LOQs) found were 0.002, 0.003, 0.009, 0.012, 0.007 and 0.024 μg/ml for MTF, SIT, PGZ, GLZ, GLB and RPG respectively. The developed method is specific and accurate for quality control and routine analysis of the cited drugs in their pharmaceutical preparations. It is recommended for application in the quality control of the herbal antidiabetic products to detect possible counterfeits.