天美传媒

Rheology: 天美传媒 Access
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Yield Stress of Bentonite Dispersions

Vassilios C Kelessidis*

Petroleum Engineering Program, Texas A&M at Qatar, Qatar

*Corresponding Author:
Vassilios C Kelessidis
Adjunct Professor, Petroleum Engineering Program
Texas A&M at Qatar, Qatar
Tel: +974-33321413
E-mail: vassilios.kelessidis@qatar.tamu.edu

Received date: November 14, 2016; Accepted date: December 08, 2016; Published date: December 15, 2016

Citation: Kelessidis VC (2017) Yield Stress of Bentonite Dispersions. Rheol: open access 1:101.

Copyright: © 2017 Kelessidis VC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

We review the factors affecting the yield stress of water dispersions of the wonder material, bentonite. Despite the multitude of applications and its wide use in industry, we still do not have adequate models which enable the prediction of the yield stress of these dispersions, which will allow the manufacturing of fluids with made to order properties. Concentration increases the yield stress of these dispersions according to an approximate power of 3.0, but modeling suggests an exponent of 2.0. pH of the suspension gives maxima and minima; however the results are inconclusive regarding their location. The presence of electrolytes decreases the yield stress of these suspensions but a concrete model to predict the yield stress is yet to be found. Polymers increase the yield stress of the suspensions except at initial low concentrations where a decrease is observed due possibly to a liquefying effect. Very recent reported experimental observations show pictures of flexed bentonite particles in band-type structures in co-existence with isolated bentonite platelets. An analysis is presented which attempts to bring some additional light into the development of the yield stress of these bentonite dispersions.

Keywords

International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top