天美传媒

ISSN: 2157-7617

Journal of Earth Science & Climatic Change
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 5125

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

Overview of quantifying the air-surface exchange of elemental mercury vapours using enclosure and micrometeorological methods

3rd International Conference on Earth Science & Climate Change

Jerry Che-Jen Lin

Workshops: J Earth Sci Clim Change

DOI:

Abstract
Reliable quantification of air-biosphere exchange flux of elemental mercury vapor (Hg0) is crucial for understanding the global biogeochemical cycling of mercury. Although several techniques with widely diverse principles have been applied, a standardized method for quantifying Hg0 flux does not exist. In this overview, the methods for measuring Hg0 flux, principally the enclosure and micrometeorological approaches, are discussed. Field data obtained from an integrated set of collocated instrumentations deployed to quantify Hg0 flux over bare soil and lightly vegetated canopy are presented to illustrate the data comparability and measurement uncertainties associated with different techniques including relaxed eddy accumulation (REA), modified Bowen-ratio (MBR), aerodynamic gradient (AGM) and two dynamic flux chamber (DFC) methods. Each Hg0 flux measurement technique has its own analytical fingerprint due to the complexity of surface exchange processes as well as the application principles and assumptions of the method. Statistical analysis indicates that the median fluxes measured by micrometeorological techniques (REA, MBR and AGM) are not significantly different. The Hg0 flux observed by a modified DFC method that incorporates surface shear correction is comparable to MBR-measured flux over bare soil, suggesting that data scaling using the friction velocity inside a DFC bridges the gap between the Hg0 fluxes measured by enclosure and micrometeorological methods. The uncertainty of Hg0 flux measurement varies greatly with the applied methods and environmental conditions. Recommendations are made in terms of selecting a suitable technique for a given set of environmental constrains to reduce Hg0 flux quantification uncertainty.
Biography
Jerry Che-Jen Lin is a Full Professor of Environmental Engineering at Lamar University. He received his MS degree at Duke University in 1995 and PhD at the University of Cincinnati in 1998. He was a Postdoctoral Associate at Oak Ridge National Laboratory during 1998-1999 before joining Lamar. He has authored and co-authored more than 70 peer-reviewed journal articles with more than 1600 citations, mainly in the areas of chemistry, fate and transport of atmospheric mercury and membrane technology. He also serves as a member in the Science Advisory Board of USEPA.
Relevant Topics
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top