天美传媒

ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 6413

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Academic Journals Database
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

Pushing time-resolved extreme UV and soft X-ray spectroscopy towards bigger molecules and condensed phase

4th International Conference and Exhibition on Analytical & Bioanalytical Techniques

Jakob Grilj, Emily Sistrunk, Markus Koch, Majed Chergui and Markus Guehr

ScientificTracks Abstracts: J Anal Bioanal Tech

DOI:

Abstract
Time-resolved spectroscopy has proven invaluable in tracking short-lived intermediates in chemical reactions. Since formation and breaking of chemical bonds happens on the time-scale of vibrational motions, femtosecond time-resolution is required to monitor thisevent. Various types of pump-probe spectroscopy with such a capability are used nowadays to elucidate the course of chemical transformations. They typically employ an ultrashort laser light pulse ("pump") to initiate a photochemical process and another laser pulse ("probe") to interrogate the sample after a given time. However, the multitude of processes happening in the first picoseconds after light absorption, e.g., energy re-distribution within the molecule and dissipation to the surrounding, pose difficulty to the unambiguous identification of intermediates. Broadband detection schemes help to disentangle these processes, yet various examples of controversial assignments can be found in the literature. In this talk, we will show how probe light in the extreme ultraviolet and soft x-ray spectral range can unequivocal identify photochemical processes and chemical species since electronic and nuclear coordinates can readily be distinguished?contrary to the commonly used visible and infrared light. This selectivity stems from the participation of core orbitals in the transitions monitored. In contrast to other groups, we work with low laser field intensities and apply this technique to the study of chemical processes in condensed phase.
Biography
Jakob Grilj has obtained his Ph.D. from University of Geneva (Switzerland) with Eric Vauthey, studying the ultrafast excited state dynamics of radical ions in liquid solution. He was awarded a Marie Curie fellowship to work with Markus Guehr at Stanford University (USA) and Majed Chergui at EPFL (Switzerland) on time-resolved extreme ultraviolet and soft x-ray spectroscopy applied to non-Born-Oppenheimer dynamics of coordination compounds
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top