天美传媒

ISSN: 2157-7625

Journal of Ecosystem & Ecography
天美传媒 Access

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 天美传媒 Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

天美传媒 Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 2854

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • 天美传媒 J Gate
  • Genamics JournalSeek
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

Removal of copper (Cu (II)) and zinc (Zn(II)) from wastewater using Saudi activated bentonite

4th International Conference on Biodiversity

Saad Al-Shahrani

ScientificTracks Abstracts: J Ecosys Ecograph

DOI:

Abstract
Application of Saudi activated clay (bentonite) to remove copper and zinc from wastewater was investigated. Natural local clay which was obtained from Khulays bentonite deposit was selected and activated using sulfuric acid to increase its adsorptive capacity. The removal characteristics of copper and zinc ions from wastewater were investigated under various operating variables such as shaking time, solution pH, clay amount, initial metal concentration and counter ions. Batch scale experiments were carried out for a wide range of initial metals concentration. The results showed that the sorption of copper and zinc ions on Saudi activated clay was relatively fast and the equilibrium was achieved after only 20 min. The sorption data suggests that solution pH was the most important parameter in controlling copper and zinc sorption onto bentonite. They also showed that increasing the initial metal concentration decreased metal removal percentage due to the saturation of clay with metal ions. Furthermore, the adsorption of copper and zinc ions increase with increase in solution pH. The adsorption isotherm data were well fitted with the linearized Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models. The maximum adsorption (qmax) for copper and zinc on Saudi activated bentonite equals to 5.26 and 3.4 mg/g respectively. Copper and zinc adsorption onto Saudi activated bentonite was well represented by the pseudo-second-order kinetic model. Saudi activated bentonite can be considered as a promising adsorbent for the removal of heavy metals from wastewater.
Biography
Saad Al-Shahrani is an associate professor at Chemical engineering department, King Abdulaziz University, Saudi Arabia. He received his Ph.D in chemical engineering at University of Manchester Institute of Science and Technology (UMIST), United Kingdom, in 2004. His current research focuses on the removal of heavy metals from soil and aqueous solutions.
Relevant Topics

International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top